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Abstract

Modeling Multiple Tasks in Recommendation Systems

by Do Dinh Hieu

Traditional research in recommendation systems has largely centered on the

static offline supervised learning setting. In this paradigm, all available user-item

interaction data is collected and partitioned into fixed training, validation, and test

sets. Models are developed and evaluated in this controlled environment, where the

underlying data distribution is assumed to remain unchanged. This approach offers

clear advantages: it simplifies experimentation, enables reproducible benchmarking,

and allows for straightforward comparisons between algorithms.

However, this static offline setting does not reflect the realities faced by mod-

ern recommendation systems. In real-world applications, data is dynamic and ever-

evolving, where new users and items are constantly emerged, user preferences shift

over time, and interactions arrive as a continuous stream. Moreover, data is often

fragmented across multiple platforms or domains, each with its own characteristics

and challenges. These factors introduce complexities such as the need for continual

adaptation and transferring knowledge across domains.

Recognizing these limitations, this dissertation aims to bridge the gap by formu-

lating recommendation problems that more accurately reflect real-world scenarios.

The primary goal is to design dynamic frameworks that efficiently learn from new

data streams, capably handle evolving user behaviors and item catalogs, and effec-

tively address data fragmentation across platforms by enabling knowledge transfer

between various tasks and domains.

To this end, this dissertation makes three principal contributions in the context

of recommendation systems. First, it introduces a novel dual-target cross-domain



recommendation framework. This framework significantly enhances recommenda-

tion quality by effectively leveraging knowledge from similar, yet distinct, datasets

across multiple domains. Second, the dissertation proposes a continual learning

framework for recommendation systems, enabling models to seamlessly adapt to

the sequential arrival of new users, items, and interactions, crucially retaining valu-

able knowledge from previous tasks. This aims to provide effective solutions for

the ever-expanding nature of real-world recommender systems. Third, it presents a

session-aware recommendation framework that integrates both short-term and long-

term user preferences. By strategically combining the strengths of experts in short-

term and long-term preferences, this approach yields more accurate and personalized

recommendations that dynamically align with users’ evolving interests.

Through these contributions, this dissertation seeks to enhance the effectiveness

of recommendation systems, ensuring their ability to meet the dynamic and evolving

demands of real-world applications.
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Chapter 1

Introduction

In the past decade, artificial intelligence (AI) has made remarkable strides, achieving or even

surpassing human-level performance in various tasks, especially those involving vision and lan-

guage. The advent of deep learning techniques has propelled AI systems to unprecedented levels

of accuracy and efficiency. However, despite these advancements, there’s one crucial area that

remains a significant challenge: recommendation systems.

Recommendation systems play a pivotal role in modern information ecosystems, facilitat-

ing personalized content delivery and enhancing user experience across diverse platforms. From

e-commerce giants to social media platforms, recommendation algorithms serve as the back-

bone of content curation, product suggestions, and user engagement strategies. Despite their

widespread adoption and undeniable impact, recommendation systems pose unique challenges

that necessitate innovative approaches. The prevailing paradigm in recommendation system re-

search revolves around offline learning settings, wherein all available data is partitioned into

distinct subsets for training, validation, and testing. The models try to learn the underlying distri-

bution of the training set, the best parameters are selected based on performance on the validation

set and are expected to generalize to new unseen data (i.e., test set). While this approach simpli-

fies model development and evaluation, it often fails to capture the dynamic nature of real-world

recommendation scenarios. In practice, recommendation systems operate in online or streaming
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environments, where users, items, and their interactions arrive sequentially, posing significant

challenges in model adaptation, scalability, and real-time decision-making. The core challenge

in ever-growing recommendation systems is the constantly evolving nature of the data. User

preferences are not static; they shift over time, influenced by the trends, seasons, and natural

changing behaviors. A user who was previously interested in action movies might suddenly de-

velop a passion for documentaries. Similarly, the catalog of items is in perpetual flux, with new

products being added and old ones being removed. This dynamic nature of data necessitates a

shift from traditional offline learning paradigms to more adaptive approaches that can effectively

handle the continuous influx of new information.

Furthermore, cold-start, sparsity, and long-tail problems represent fundamental challenges

that afflict recommendation systems, limiting their effectiveness in capturing user preferences

and providing accurate recommendations. Cold-start scenarios arise when new users or items

lack sufficient historical data, making personalized recommendations difficult. Similarly, spar-

sity issues arise when the available data is scarce or incomplete, hindering the system’s ability

to model user-item interactions effectively. Compounded by the power law distribution, wherein

the majority of users and items have minimal interactions (i.e., long-tail users/items), the model

becomes skewed toward popular entities, complicating the accurate learning of all user pref-

erences. These challenges necessitate the development of more sophisticated recommendation

framework that can effectively handle dynamic data streams, adapt to evolving user preferences,

and leverage knowledge transfer across domains and tasks.

The foci of this dissertation are to (i) formulate more dynamic settings for recommendation

systems based on the fragmentation and growing nature, being able to handle new data streams

coming into the systems and enable information transfer between domains; and (ii) leverage

multiple tasks and models in different ways to mutually improve performances, avoiding inter-

ferences, and enhancing the effectiveness of recommendation systems.
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Tasks in Machine Learning

We provide an introduction to the concept of tasks in machine learning and discusses different

learning paradigms for handling multiple tasks.

In broad terms, a machine learning problem denotes the goal that one machine learning model

aims to address. Common problems include image classification, text generation, and top-K

recommendation. When provided with specific input and output (i.e., data), a machine learning

problem becomes a learning task. Similar tasks from distinct underlying data distributions are

referred to as domains. We can consider domain as a more specific term than task (i.e., two

different domains can be seen as two tasks, but not vice versa).

Supervised Learning. The typical learning task we refer to is supervised learning, which

is the most prevalent learning paradigm. Given the dataset D = {(X, y)} with an unknown

underlying relation y = g(X), the objective is to find an approximated function f parameterized

by ϑ that maps fω(X) ↓ y. The quality of this mapping function is measured using a designated

loss function ω between the model prediction and ground truth output ω(fω(X), y). By optimizing

the loss function, we aim to derive a “good” model that can generalize well to unseen data. While

supervised learning proves effective in many scenarios, it simplifies the problem into a stationary

setting, which may fail to capture dynamics present in numerous real-world situations.

Online Learning. Unlike supervised learning, online learning deals with data streams where

information arrives sequentially [52, 121]. The model must learn from each data point efficiently,

as opposed to iterating over the entire dataset multiple times like in supervised learning.

Multi-Domain Learning. This approach involves training a model on the same task across

multiple related domains simultaneously [27, 60]. The goal is to leverage shared parameters be-

tween domains to improve generalization and avoid overfitting. Multi-domain learning assumes

all domain data is available for training beforehand (offline setting).

Multi-Task Learning. This approach tackles multiple related tasks simultaneously, leverag-

ing shared parameters between them [143, 155]. The goal is to improve generalization and avoid

3



overfitting by exploiting knowledge gained from solving multiple tasks. Similar to multi-domain,

multi-task learning assumes all task data is available beforehand.

Continual Learning, also known as lifelong or incremental learning, addresses the problem

of learning from an infinite stream of tasks [24, 36, 107, 108]. The goal is to leverage accumulated

knowledge from all past tasks to enhance future learning, while continually refining previously

learned tasks with each new task coming.

Transfer Learning. In transfer learning, knowledge acquired from a source task (often rich

in data and containing generalizable features) is transferred to a target task [155, 165]. Fine-

tuning is a popular technique where a pre-trained model on a large source task (denoted by ϑ→S)

is used to initialize learning for the target task.

Domain Adaptation [5, 151]. This is a specialized form of transfer learning where source

and target tasks are similar but drawn from different domains. The target domain data might

be unlabeled. The objective is to adapt the source-trained model for good performance on this

unlabeled target data. This relaxes the assumption of classical machine learning, where training

and testing data share the same underlying distribution.

Meta Learning [31, 32, 102]. The concept of meta-learning has evolved over time. Tradi-

tionally, it referred to a model’s ability to improve its learning efficiency across an increasing

number of tasks. Currently, the focus is on “few-shot learning”, where a model is trained on a set

of tasks and then, during testing, presented with a few examples of new tasks, the model needs to

quickly learn and perform well on these unseen tasks. While this concept overlaps with continual

learning, the key difference is that meta-learning trains on the tasks with offline setting.

1.1 Tasks in Recommender Systems

Two-sidedness is a key characteristic that distinguishes recommendation systems from other ma-

chine learning problems. In recommender systems, there are two types of entities: users and

items. The objective is to match users with items they are likely to prefer. The most common

4



Figure 1.1: Diagram of different recommendation system learning paradigms.
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Single
Model

Multiple
Models
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Multiple Tasks

Single Domain

Multiple
Domains

Simultaneous

Sequential

Supervised
Learning

(Section 1.1.1)

Cross-Domain
(Section 1.1.2)

(Chapter 3)
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Learning

(Section 1.1.3)
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(Section 1.1.4)
(Chapter 4)

MoE-based
(Section 1.1.5)

(Chapter 5)

form of data in recommendations is the interaction matrix between users and items. These inter-

actions can be explicit (e.g., ratings and reviews) or implicit (e.g., views and purchases).

In this section, we categorize recommendation systems into different learning paradigms

based on the models and tasks involved, as illustrated in Figure 1.1. We will discuss each

paradigm in detail, including supervised recommendation systems, cross-domain recommen-

dation, multi-task recommendation, continual learning for recommendation, and mixture of

experts-based recommendation.

1.1.1 One Model, One Task: Supervised Recommendation Systems

Given a set of users U, a set of items I, and their interactions represented by a typically sparse

matrix R ↔ R|U|↑|I|, the general objective is to reconstruct the interaction matrix: fω(U, I) ↓ R.

Here, we aim to learn a model f parameterized by ϑ that predicts the score for each user i and

item j as rij := fω(Ui, Ij).
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Model training is performed by minimizing the loss between the predicted output fω(U, I)

and the ground truth R, formulated as:

argmin
ω

ω
(
fω(U, I),R

)

where ω represents the loss function that measures the discrepancy between the predicted and

actual interaction scores.

In supervised recommendation task, there is a single model f , a single loss function ω, and a

single dataset R. However, real-world scenarios involve multiple tasks addressed simultaneously

or sequentially. This leads to the emergence of various learning paradigms in recommendation

systems, including multi-task learning, cross-domain recommendation, and continual learning.

1.1.2 One Model, Multiple Domains: Cross-Domain Recommendation

Cross-domain recommendation (CDR) entails leveraging shared information across two or more

domains to enhance recommendation performance. The conventional approach is single-target

CDR, where knowledge from domains rich in information (such as explicit/implicit feedback and

user demographics) is utilized to enhance recommendations in a sparser target domain. Specif-

ically, let Us, Is and Ut, It denote the user and item sets in the source and target domains, re-

spectively, with their interactions represented by rating matrices Rs and Rt. Here, the focus

lies solely on improving recommendation performance in the target domain Rt, while the source

domains Rs serve as supplementary information aiding the learning process. Single-target CDR

aims to learn both domains with a single model fω that can leverage information from both do-

mains jointly. The objective is formulated as:

argmin
ω

ω
(
fω(U

t, It | Us, Is,Rs),Rt
)

Previous research has also explored dual-target and multi-target CDR scenarios. In these
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setups, different domains interact reciprocally with the aim of enhancing recommendation accu-

racy across all involved domains. The objective of dual-target CDR can be represented in two

forms, (i) losses combination:

argmin
ω

[
ϖω1

(
fω(U

s, Is),Rs
)
+ (1↗ ϖ)ω2

(
fω(U

t, It),Rt
)]

and (ii) joint modeling:

argmin
ω

ω
(
fω(U

s, Is,Ut, It),Rs,Rt
)

Cross-domain recommendation bears resemblance to multi-task learning, where multiple task

objectives are jointly optimized. However, dual/multi-target CDR represents a more specialized

context, typically involving domains with consistent data formats. In contrast, multi-task learn-

ing encompasses various tasks, such as rating prediction, ranking prediction, and explainability,

which can vary independently. Consequently, techniques from multi-task learning are also ap-

plied to address cross-domain recommendation problems.

In Chapter 3, we introduce a novel dual-target cross-domain recommendation setting, named

NO3, which stands for no overlap of users, no overlapping items, and no side information. In

this setting, we aim to learn two similar tasks from two distinct domains without any user or item

overlap, and without relying on side information.

1.1.3 One Model, Multiple Tasks: Multi-Task Recommendation

Multi-Task Recommender Systems (MTRS) in recommendation systems aims to learn multiple

related tasks in a unified model to mutually improve performances based on their shared infor-

mation. Compared to cross-domain recommendation, MTRS formulation is more general and

not limited to multiple domains of the same tasks. MTRS may involve multiple recommendation

tasks, including but not limited to: rating prediction, ranking prediction, explainability, sequen-

tial recommendation, user profile prediction, and so on. The most common approach is to learn

7



multiple tasks in parallel, where the model learns all tasks simultaneously. The objective can be

formulated as weighted losses combination:

argmin
ω

n∑

i=1

ϖiωi
(
fω(U

i, Ii),Yi
)

where ωi is the loss function for task i, ϖi is the weight for task i, fω is the unified model

for all tasks, and Ui, Ii,Yi represent the set of users, items, and general target output for task i.

Here, we use Yi to denote the target output, which can be ratings, ranking scores, or any other

task-specific outputs. The model learns to optimize all tasks simultaneously, sharing parameters

across tasks to improve generalization and avoid overfitting.

1.1.4 One Model, Sequential Tasks: Continual Learning for Recommen-

dation

While various learning approaches have been extensively investigated for recommender systems,

continual learning remains relatively overlooked. Continual learning addresses the problem of

learning from an infinite stream of tasks. The goal is to leverage accumulated knowledge from

all past tasks to enhance future learning, while continually refining previously learned tasks with

each new task coming. In continual learning, we aim to use a single model fω to learn new tasks

as they arrive, while simultaneously retaining knowledge from previously learned tasks within

the same model.

When a new task t is introduced, we leverage the accumulated knowledge from all preceding

tasks, distilled in ϑ→t↓1, to boost the learning of the new task using dataset Rt, deriving of new

optimal parameters ϑt→. This process can be formulated as minimizing the expected loss function:

ϑ→t = argmin
ωt

ERt

[
ω
(
fωt(U

t, It | ϑ→t↓1),R
t
)]

(1.1)

Throughout this learning process, the model is required to retain useful knowledge from ϑ→t↓1.
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This paradigm seems particularly apt for recommendation systems, where the users, items,

and their interactions continuously expand. Continual learning offers a structured framework

that aligns with the evolving dynamics of a recommendation platform. However, the adaptation

of continual learning to recommendation systems has been limited by the absence of a robust

formulation for managing the ongoing influx of tasks.

In Chapter 4, we introduce a standardized framework for Continual Collaborative Filtering,

which provides a structured approach to training, testing, and evaluating incremental collabora-

tive filtering models. This framework aims to facilitate the development of continual learning

models that can effectively adapt to the dynamic nature of recommendation systems.

1.1.5 Multiple Models, One/Multiple Task(s): Mixture of Experts based

Recommendation

In some scenarios, it is beneficial to use multiple models to handle a single task. In the past,

this approach was usually referred to as ensemble methods, where multiple models are trained

independently and their outputs are combined to produce the final recommendation. In recent

years, Mixture of Experts (MoE) has been proposed as a more sophisticated approach to ensem-

ble learning. MoE involves training multiple specialized sub-networks, known as experts and

a gating network that dynamically selects the most relevant experts for each input. This archi-

tecture allows individual experts to specialize, for instance, in a multi-task setting, each expert

can handle a distinct task, while in a single-task setting, they can focus on different facets of

the user preferences. This specialization allows the model to significantly increase its capacity

and capture a wider range of patterns, while maintaining efficiency, as only a targeted subset of

experts is activated for any given input.

The general formulation of MoE can be represented as:

y =
n∑

i=1

g(x)i · fi(x)
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where x is the input, g(x) is the gating function that determines the relevance of all experts

for input x, g(x)i is the i↗th component which indicates the importance of expert i, and fi(x)

is the output of expert i. The gating function can be learned to assign higher weights to experts

that are more relevant to the input. Subsequently, the output y can be used to passed to the next

layer or to produce the final recommendation.

In recommendation systems, MoE-based approaches have been employed mostly to handle

multi-task learning scenarios, where different experts are trained to be specified for their target

tasks. Chapter 5 presents a novel framework that models both short-term and long-term prefer-

ences to enhance recommendation performance.

1.2 Main Contributions

The objective of this dissertation is to advance the modeling of multiple domains and tasks within

recommendation systems, extending beyond the confines of traditional offline supervised learn-

ing. It aims to propose model-agnostic solutions to enhance learning within these paradigms.

First, we investigate dual-target cross-domain recommendation, where two related domain

datasets originate from distinct platforms. We introduce the NO3 setting, characterized by no

user overlap, no item overlap, and no side information. We begin by presenting a multi-task

learning framework in which the model learns both domains simultaneously. Subsequently, we

propose a methodology to “tie” similar users, fostering closer representations, and leverage me-

diated latent user preferences to improve recommendation quality in both domains.

Next, we address the more intricate challenge of continual learning in recommendation sys-

tems. Here, the recommender must adapt to the arrival of new users, items, and interactions

over time. We introduce a standardized framework for the training, testing, and evaluation of

incremental collaborative filtering. Furthermore, we propose a model-agnostic approach that can

be seamlessly integrated with any traditional recommendation model. This approach aims to

maximize transferability and mitigate interference among multiple tasks.
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We also explore the effects of short-term and long-term user preferences in sequential rec-

ommendation and propose a novel framework that leverages the strengths of both preferences

to enhance recommendation performance. By integrating these two aspects, we aim to provide

more accurate and personalized recommendations that align with users’ evolving interests.

The remainder of this dissertation is organized as follows: Chapter 2 provides a broad

overview of related work across various settings. Our work on dual-target cross-domain rec-

ommendation is detailed in Chapter 3. In Chapter 4, we present the continual collaborative

filtering framework. Chapter 5 discusses our work on session-aware recommendation, focus-

ing on the integration of short-term and long-term user preferences. Finally, Chapter 6 outlines

future directions for modeling multiple tasks in recommendation systems.
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Chapter 2

Literature Survey

As discussed in Chapter 1, one recommendation problem involves one or multiple models han-

dling a single or multiple tasks. Prior work has delved into both single and multiple tasks.

Traditional recommender systems typically address individual tasks, while rising attention shifts

towards formulating multiple tasks in recommendations. Of particular focus in this thesis are

multi-task learning, cross-domain, continual learning, and Mixture of Experts (MoE) based rec-

ommendation.

2.1 Traditional Recommender Systems

In recent years, the landscape of recommender systems has undergone a significant transforma-

tion. This transformation has been fueled by the integration of cutting-edge methodologies from

Figure 2.1: Prior work with different learning paradigms in recommendation systems.

Recommender Systems Learning Paradigms

Supervised learning

Collaborative
filtering

itemCF [123]
MF [63]

NCF [42]
LightGCN [44]

Content-based

LIBRA [22]
Meta-prod2vec [134]

DMRL [83]

Multi-task learning

Parallel

RnR [39]
MTER [138]

ComparER [68]

Cascaded

ESMM [91]
MLPR [146]

HEROES [59]

Auxiliary

MetaBalance [45]
MTRec [74]
CSRec [4]

Cross-domain

Single
Target

CLFM [34]
RMGM [79]

Dual
Target

DTCDR [161]
GA-DTCDR [162]

DDTCDR [73]

NO3-CDR [25]

Continual learning

Replay
based

ASMG [104]

UACF [24]

Regularization

UACF [24]

Parameter
isolation

Conure [153]
ASMG [104]

MoE based

MMOE [90]
SNR [92]
PLE [130]

CoVE [26]
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diverse fields such as deep neural networks, Transformer, and Large Language Models (LLM).

While LLM-based approaches have garnered attention for their zero-shot capability, classical

methods remain essential in practical applications and continue to be a focal point of ongoing re-

search endeavors. In this section, we discuss three main categories of recommendation systems:

collaborative filtering, content-based recommendation, and sequential recommendation.

2.1.1 Collaborative Filtering

Collaborative filtering is a foundational technique in recommendation systems, traditionally ori-

ented towards the batch learning paradigm. This approach leverages the social connections be-

tween users and items, utilizing the known preferences of a group of users to generate recom-

mendations for others. Collaborative filtering methods are generally categorized into two types:

memory-based methods and model-based methods.

Memory-based methods involve identifying similar users or items to make recommenda-

tions. In a typical memory-based algorithm, given a candidate user, we try to find k most similar

items based on all items that the user has rated [123]. Advances in memory-based methods fo-

cus on finding better similarity metrics, such as Pearson correlation [97, 117] or vector cosine

similarity [122, 123]. This approach is non-parametric, straightforward, easy to implement, and

flexible for adding new data; however, it relies heavily on a dense rating matrix and performs

poorly with sparse data or cold-start users/items.

Model-based methods focus on designing models that can capture user preferences and item

characteristics in dense vector representations. Examples of model-based recommendation sys-

tems range from basic linear Matrix Factorization (MF [55, 63, 100, 114, 115]) to more complex

neural network-based models such as Neural Collaborative Filtering (NCF [42]), variational au-

toencoders [80, 133], and graph-based models [13, 41, 44, 57]. These models learn high-quality

user/item representations used to calculate rating scores or item rankings.

Collaborative filtering, while a powerful technique in recommendation systems, does come
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with its own set of weaknesses. One major limitation is the “cold start” problem, where new

items or users lack sufficient data for accurate recommendations. This can lead to poor recom-

mendations for new users or items until they have generated enough interaction data.

2.1.2 Content-Based Recommendation

The general concept of content-based recommenders is to suggest items based on their similar-

ities with user profiles or items that users previously interacted with. This method analyzes the

key attributes of a user’s favorite items by analyzing their descriptions. These preferences are

then used to build the user’s profile. New candidate items that closely match this profile will be

recommended.

For example, [85] recommends webpages based on tag similarities, while LIBRA [22] inte-

grates tags with item descriptions for improved recommendations. Meta-prod2vec [134] incor-

porates metadata as additional information to better learn item embeddings through user-item

interactions.

Content-based recommendation systems are effective in cold-start scenarios for both users

and items, where users provide their initial interests or demographic information, and items’

metadata and descriptions are used to analyze item properties. However, because the feature

representations of items are partially designed manually, this method requires significant domain

knowledge. Additionally, content-based recommendation systems can only suggest items based

on existing user interests, limiting their ability to broaden those interests.

2.1.3 Sequential Recommendation

Sequential recommendation aims to recommend items to the user by modeling their past behavior

sequences and characterizing their dynamic interests. We assume that modeling sequence data

more accurately captures short-term preferences. Session-based recommendation approaches of-

ten ignore the personalized context (e.g., user identity is omitted). Previous works used Markov
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Chains (MC) to capture local sequential patterns [46, 116, 137]. To address sequential data,

[50] uses recurrent neural networks (RNN) such as Gated Recurrent Unit (GRU), [150] ap-

plies the attention mechanism, [61, 105, 131] use the Transformer architecture [135]. [71]

models contemporaneous basket sequences for next-item prediction using twin networks. [142]

applies multiple contrast signals for sequential recommendation. [139, 140] model sequences

using hypergraphs, [149] further model multibehaviours. [7, 112] focus on the common re-

peat consumption behaviors. Others use convolutional neural networks (CNN) for faster parallel

computation [129, 152] Another line of work is session-aware recommendation, which further

leverages cross-session information to model longer item associations from one session to previ-

ous sessions. [70] models user historical baskets. [109] carries the hidden state of interactions

from previous sessions into the current session. Another line of work is the next-basket recom-

mendation, recommending a set of items given historical baskets [76].

2.1.4 Other Recommender System Formulations

In complex scenarios, hybrid approaches [8, 9, 21, 37, 145] integrate collaborative filtering and

content-based models to harness the strengths of each method and mitigate their weaknesses.

Collaborative filtering struggles with cold-start users and items due to their limited interactions,

while content-based models overlook user preferences in recommendations. Hybrid approaches

offer a balanced solution, addressing the limitations of both individual methods.

Prior studies have also explored the use of side information to enhance recommendation

performance. For instance, social networks [89], topic modeling [144], reviews [132, 159],

questions [69], and images [11] have been utilized to improve recommendations. These auxiliary

information sources can help alleviate the cold-start problem by providing additional context

about users and items.

The utilization of a large language model (LLM) in recommendation systems has garnered

significant attention in recent research. Language model architectures have been extensively
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adopted in recommendation systems due to their inherent similarities in sequential character-

istics, particularly in sequential recommendation tasks, as evidenced by models such as SAS-

Rec [61] and BERT4Rec [128]. The incorporation of large language models (LLMs) into rec-

ommendation systems is a growing trend. This integration is primarily driven by the LLMs’

capacity for textual understanding, which enables text-based recommendations and the incor-

poration of textual modalities into recommendation systems [35, 113]. However, their role in

ID-based recommendation remains limited, often functioning as a supplementary component

rather than a core model [14]. There is no clear evidence showing that LLM can easily outper-

form traditional models in ID-based recommendation [53, 77, 154]. On the other hand, the high

computational cost and input token limitations for datasets with large number of items outweigh

their performance benefits, making their integration a challenging trade-off.

Recent years have witnessed several modern recommender systems formulations, such as

explainable or reinforcement-based recommendations, though not in the scope of this thesis. We

refer to [2, 15, 30, 120, 158] for comprehensive surveys on these formulations.

2.2 Multi-Task Recommendation

Previous research in this domain can be classified into three main types: (i) parallel [12, 39, 138],

(ii) cascaded [91, 147], and (iii) auxiliary [45, 74].

Parallel multi-task recommendation concurrently optimizes two or more recommendation

tasks using a weighted sum of their objective functions. For instance, RnR [39] combines ranking

and rating prediction tasks for personalized video recommendations, while MTER [138] and

ComparER [68] integrate explanation generation alongside recommended items.

Cascaded multi-task recommendation refers to a sequential chain of tasks that must be

performed in a strict order, modeling user behavior stages such as moving from impression to

click, then to add-to-cart, and finally to purchase. This approach is distinct from sequential

recommendation. An example of early work in this domain is ESMM [91], which addresses
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sparsity and sample selection bias through an “impression ↓ click ↓ conversion” sequence.

Auxiliary multi-task recommendation. In the auxiliary task relation, one task is desig-

nated as the main task, with other tasks serving as auxiliary tasks to enhance the main task’s

performance. This approach is similar to single-target cross-domain recommendation. MetaBal-

ance [45] aims to reduce the gradient magnitude of auxiliary tasks to prioritize the target task

objective, while MTRec [74] incorporates link prediction to support the primary recommenda-

tion task.

In recent years, the concept of multi-scenario recommendation has emerged as a sub-category

of multi-task learning. This approach involves addressing various scenarios to make recommen-

dations in different contexts. These scenarios include situations such as providing recommen-

dations on a homepage, suggesting similar products on individual product pages, and offering

suggestions as users review their carts during the checkout process.

2.3 Cross-Domain Recommendation

CDR has garnered significant attention from the research community, encompassing various

problem settings. Prior studies can be categorized using different criteria.

2.3.1 Single-Target, Dual-Target, and Multi-Target

Foundational work [6, 16, 28, 33, 43] formulates single-target setting, which aims to mitigate data

sparsity by utilizing redundant data or information from other domains to enhance the original

domain. For instance, CBT [78] generates a codebook matrix to extract cluster-level ratings

from an auxiliary domain to support the target domain. TALMUD [101] expands on this by

incorporating multiple source domains with varying relevance rates.

The research then extends into the multi-target CDR [29, 34, 82, 110, 111]. CLFM [34]

adopts a multi-target approach, dividing the cluster-level codebook into common and domain-
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specific sections. RMGM [79] integrates multiple sparse domains sharing common latent cluster-

level patterns into a generative model.

Recently, dual-target CDR [73, 161, 162] have gained more attention, aiming to improve

recommendation quality across both domains. DTCDR [161] first formulates dual-target setting

by sharing user knowledge across domains. GA-DTCDR [162] enhances this framework using

graph and attention mechanisms to learn better representations of overlapping users.

2.3.2 User Overlapping

Several studies [6, 54, 84, 93] address scenarios where there is full user overlap across do-

mains, treating each domain as a vertical partition of the rating matrix. Techniques such as

tri-factorization [54] and graph convolutional networks [38] are employed to align user prefer-

ences across domains.

Conversely, [16, 34, 148, 156] focus on the problem of non-overlapping users, leveraging

user tags [16] and item features [126] as auxiliary information.

Further research explores the concept of partial user overlap [95, 110, 141, 163, 164] using

methods like collective matrix factorization [110] and representation combination [161].

2.3.3 Using Side Information

Auxiliary knowledge, such as user tags [16, 148] and textual descriptions [66, 126], is also uti-

lized to enhance recommendations. FUSE [16] integrates social network information by utilizing

tensor factorization using users’ generated tags. SCD [66] discovers similar items across domains

by extracting semantical information from items’ textual information.
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2.4 Continual Learning for Recommendation

Continual learning seems to perfectly fit the growing nature of recommender systems; however,

it has not been widely studied and remains under-explored.

While a few studies explore incremental learning in recommendation systems, limitations

in their settings and evaluation protocols hinder a true continual learning framework. Ader [98]

uses knowledge distillation for online session-based recommendations, splitting sessions by time

and fine-tuning the model in online learning manner. Conure [153] formulates multi-platform

recommendations as a continual learning problem. After each task, a small portion of the most

“active” parameters (i.e., parameters with the largest absolute values) are retained and fine-tuned,

while the others are set as inactive. The refined parameters are then frozen, and the redundant

parameters are used to learn new tasks. However, Conure cannot accommodate new users; it can

only learn from users who existed in previous tasks for every new task. ASMG [104] proposes a

framework that refines a generative model over previously learned tasks to create a more up-to-

date serving model at test time.

While continual learning methods aim to mitigate forgetting and maximize positive forward

effects, the experimental evaluations in [98, 104, 153] only assess post-learning model perfor-

mance. They overlook the effects across tasks, such as the retention of previously learned tasks

and how prior tasks affect the ability to learn new ones.

2.5 Mixture of Experts Based Recommendation

Mixture of Experts (MoE) has emerged as a powerful framework for recommendation systems,

particularly in multi-task learning scenarios [90, 92, 130] as the alternative to shared bottom

architecture. MoE allows for the specialization of different models (experts) to handle specific

aspects of the recommendation task, enabling higher capacity, more efficient learning.

For instance, MMOE [90] employs multiple gating networks to determine relevant experts
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for each task in multi-task recommendation setting. SNR [92] extends MMOE with sub-network

routing mechanism. PLE [130] proposes progressive layer extraction to address the seesaw phe-

nomenon, where one task’s performance improves at the expense of another’s. M3oE [157]

introduces a framework for multi-domain multi-task mixture of experts recommendation.
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Chapter 3

Dual-Target Disjointed Cross-Domain

Recommendation

In the modern era, users increasingly interact with content across multiple online platforms,

leading to a fragmented ecosystem where data is dispersed among distinct but related domains.

While these platforms often host overlapping or similar items, their user interaction data remains

isolated, resulting in significant sparsity within each individual domain. This data sparsity, es-

pecially acute in item-rich environments, undermines recommendation quality—particularly for

users or items with limited interaction histories.

Cross-domain recommendation (CDR) aims to mitigate such issues by enabling knowledge

transfer across different domains. Prior approaches often rely on overlapping users or items, or

exploit side information such as user demographics or item metadata. However, these assump-

tions rarely hold in practice due to privacy constraints, system heterogeneity, or simply a lack of

shared identifiers.

In this chapter, we explore a more challenging and realistic scenario for cross-domain recom-

mendation, namely NO3-CDR, where there are no overlapping users, no overlapping items, and

no side information between the domains. This setting is motivated by practical environments

such as independent platforms offering similar services or products, where user identity linkage
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Figure 3.1: Four scenarios of overlapping user and item.

is infeasible.

To address this challenge, we introduce a novel framework that establishes a bridge between

domains through implicit structural alignment of user preferences. We propose two strategies,

hard user matching and soft user matching, to learn from analogous user behaviors across do-

mains without relying on direct correspondence. These methods allow the model to align latent

user representations and transfer learned patterns, even in the complete absence of shared entities

or auxiliary data.

3.1 Problem Formulation

Cross-Domain Recommendation (CDR) in General. The original CDR is useful when data

from one domain (known as the source domain), such as user-item interactions, is utilized to

improve the recommendation process in a different but related domain (referred to as the target

domain). The primary goal of CDR is to address challenges like data sparsity and the cold-start

problem in the target domain by exploiting knowledge from the source domain.
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Single-Target vs. Dual-Target Approaches. Prior research in CDR systems has explored

methodologies aiming to transfer knowledge between distinct recommendation domains. Early

work focuses on single-target approaches which typically entail exploiting redundant information

from a source domain to a less abundant target domain. In these scenarios, the rich user or item

information acquired from the source domain assists the learning process for the sparser target

task. Techniques such as domain adaptation and transfer learning have been employed to improve

recommendation performance specifically towards target domains.

Recently, there has been a growing interest in dual-target approaches, focusing on enhancing

user and item recommendations across both domains. These methods seek to elevate recommen-

dations by pinpointing and leveraging the common ground between user preferences and item

attributes, thereby catering to the diverse interests of users across various domains.

Overlapping vs. Non-overlapping Data. Based on the overlap of users and items, cross-

domain recommendations can be categorized into four scenarios as illustrated in Figure 3.1:

• No overlap: U1 ↘U2 = ⊋ and I1 ↘ I2 = ⊋. There is no overlap between users and items.

• User overlap: U1 ↘ U2 ≃= ⊋. There are shared users in both domains.

• Item overlap: I1 ↘ I2 ≃= ⊋. There are shared items in both domains.

• User and item overlap: U1 ↘ U2 ≃= ⊋ and I1 ↘ I2 ≃= ⊋. There are overlaps between both

users and items.

CDR with overlapped users/items seeks to capitalize on cross-domain information to enrich

recommendations within the focal domain. Traditionally, such approaches presume users engag-

ing across both domains, aiming to suggest source items to target users or mitigate cold-start

issues for users new to the target domain. Yet, the constraint of overlapped users lacks practical-

ity in the real world, considering that real user identities are not widely available.

Due to the limitations of assuming overlapped entities across domains, previous studies ad-

dress the more general scenario of non-overlapping CDR, where they can leverage auxiliary

information such as demographics and textual data across domains.
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through a new recommendation model as an independent learning task.

However, in scenarios where additional side information is unavailable or disregarded, the

recommendation task relies solely on the historical user-item interactions. This situation poses

challenges in bridging the gap between the two domains.

In this chapter, we address the novel setting of dual-target, non-overlapping, cross-domain

recommendation, where auxiliary information is unavailable. Our objective is to bridge the gap

in user preferences between the two domains by aligning the underlying shared preferences of

users across domains, distinguishing our novel problem setting from previous studies.

3.2 Methodology

In the context of two distinct yet related tasks, D1 ↔ R|U1|↑|I1| and D2 ↔ R|U2|↑|I2|, our objective

is to develop a recommender model f parameterized by ϑ, denoted as fω, capable of capturing

user preferences while enhancing recommendation performance for both tasks. Notably, we
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operate under the assumption that there is no predefined relationship between the sets of users

(U1,U2) and items (I1, I2). Our focus is on the generalized scenario where user identities remain

anonymous and cannot be directly mapped, and no additional item-related information, such as

descriptions or reviews, is available.

Dual-target CDR. The dual-target framework is designed to optimize recommendation ac-

curacy across domains. We aim to learn a unified model fω, that performs effectively in both

domains:

ϑ→ = argmin
ω

(
ω(D1 | ϑ) + ω(D2 | ϑ)

)
(3.1)

Here, ω represents a general model-agnostic loss function, such as Root Mean Squared Error

(RMSE) for Matrix Factorization or Binary Cross-Entropy (BCE) for Neural Collaborative Fil-

tering (NCF).

Optimizing vanilla dual-target CDR is equivalent to a simultaneous multi-task learning ob-

jective through a shared objective:

ϑ→ = argmin
ω

ω(D1,D2 | ϑ) (3.2)

In this scenario, the set of users, denoted as U , is the union of two distinct individual user sets,

i.e., U = U1 ⇐ U2, with |U| = |U1|+ |U2|. Similarly, the set of items, denoted as I, is the union

of individual item sets, i.e., I = I1 ⇐ I2, with |I| = |I1|+ |I2|.

3.2.1 HNO3-CDR: User Hard-Matching for Cross-Domain Recommenda-

tion

In the first attempt to bridge the connection of users in two domains, we find the hard-matching

of every user from one domain to one corresponding user in the other domain, maximizing

the similarities of matched users. Hungarian Algorithm [65] is a widely employed method to

solve assignment problems. This classic algorithm minimizes the total cost of assignments in
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Algorithm 1: HNO3-CDR Learning Algorithm
Input : D1,D2,U = U1 ⇐ U2, I = I1 ⇐ I2

ϑ→ = argminω ω(D1 ⇐D2 | ϑ) ϱ Derive representations
row ind, col ind = Hungarian(ϑ→U1 , ϑ→U2) ϱ Users matching
Û = map(U , row ind, col ind) ϱ Mapping user indices
D ↔ R|Û |↑|I| ϱ New dataset from substituted users
”→ = argminω ω(D | ”) ϱ Learn until convergence
Output: ”→

bipartite graphs, offering an efficient solution for various contexts. One user from the first do-

main can be assigned to at most one user in the other domain and vice versa. This results in

a hard one-to-one user-matching across the two domains. Algorithm 1 and Figure 3.2 illus-

trate the step-by-step hard-matching learning algorithm for CDR. First, we obtain the optimal

user representations from both domains in a multi-task learning setting, where the domain-

specific datasets are combined as D1 ⇐ D2. The optimal parameters are learned by optimizing

ϑ→ = argminω ω(D1 ⇐ D2 | ϑ). Next, we produce the mapping of the two user sets using the

Hungarian algorithm. The resulting matching is then used to substitute users from one domain

with their counterparts in the other. For example, if user u1
i ↔ U1 is matched with user u2

j ↔ U2,

we replace u2
j with u1

i . This creates a full overlapping user scenario, where the matched users

are merged into a single unified set, denoted as Û . Finally, using the substituted user set Û , we

construct a new dataset D ↔ R|Û |↑|I| and optimize a new model g! accordingly.

3.2.2 SNO3-CDR: Soft-Matching End-To-End Cross-Domain Recommen-

dation

HNO3-CDR faces several challenges. Firstly, it adopts a step-by-step learning process, where

each step is executed discretely without a seamless flow, posing difficulties in optimization. Sec-

ondly, the mapping process occurs after the initial learning phase, creating uncertainty regarding

the meaningfulness of the connection between the two user sets. Once this mapping is done,

adjustments to enhance its suitability are not possible. To address these issues, we propose a
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Figure 3.3: SNO3-CDR workflow. Users, items, and ratings go through the normal embedding
layer and recommendation model fω to derive generic recommender loss ω between model pre-
diction and target y. Sinkhorn distance ωS between two user sets acts as a bridge of users between
the two domains and is combined with generic loss.

solution that involves user soft-matching and functions as an end-to-end learning model. This

model streamlines the learning process into a continuous flow and prioritizes the optimization of

general recommendations alongside the meaningful mapping of users. The end-to-end architec-

ture ensures a continuous and adaptable mapping process, allowing for continuous enhancement

of user representation with a focus on fostering meaningful connections throughout the model

optimization process.

Sinkhorn distance

Optimal transport algorithms try to minimize transportation cost from source/producer to tar-

get/consumer given the producer’ capacities and consumers’ needs:

d = min
∑

i,j

Pi,jCi,j

Subject to: Pi,j ⇒ 0 for all i, j
∑

j

Pi,j = ri for all i

∑

i

Pi,j = cj for all j
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Algorithm 2: SNO3-CDR Learning Algorithm
Input : D = D1 ⇐D2,U = U1 ⇐ U2, I = I1 ⇐ I2, learning rate ϖ
for iteration = 1, . . . , w do

ϑ = ϑ ↗ ϖ⇑⇓ω(D | ϑ) ϱ w↗step warmup iterations
ϑ→ = argminω ω(D | ϑ) + ςωS(ϑU1 , ϑU2) ϱ Optimize until convergence
Output: ϑ→

where Pi,j is the amount to transport from Pi to Cj , Ci,j is cost to transport from Pi to Cj , ri is

capacity of Pi, and cj is Cj’s need.

Sinkhorn algorithm [3, 19] can be applied to transform the optimal transportation problem

into the mapping of two “point clouds”, where we transport “mass” from one set of points to

another. [19] rewrites the original optimization formulation into Lagrange form:

dS(P,C) =
∑

i,j

Pi,jCi,j ↗
1

φ
h(P ) +

∑

i

mi

(
∑

j

Pi,j ↗ ri

)
+
∑

j

nj

(
∑

i

Pi,j ↗ cj

)

with mi and nj are Lagrange multipliers.

The derivative w.r.t. P can be easily derived by:

↼dS
↼Pi,j

= Ci,j +
1

φ
+

1

φ
logPi,j +mi + nj

This differentiable Sinkhorn distance can be seamlessly incorporated into any general objec-

tive of recommender models.

Mediate Latent Preferences by Sinkhorn Distance.

We constrain users from two domains to be close to each other without binding them tightly

one-to-one. We define the Sinkhorn distance between two sets (i.e., point clouds) of user repre-

sentations, U1 and U2, as:

ωS(ϑU1 , ϑU2) = dS(U1,U2) + dS(U2,U1) (3.3)
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Here, dS(U1,U2) denotes the standard uni-directional Sinkhorn distance from point cloud U1 to

U2, calculated using an arbitrary ground distance function (e.g., Euclidean, cosine) as the trans-

portation cost between points in U1 and U2. This results in a symmetric, bi-directional distance

measure. ωS is differentiable with respect to both sets of representations, ϑU1 and ϑU2 , making

it suitable for gradient-based optimization within a recommender system framework. Alterna-

tively, we could employ a standard uni-directional Sinkhorn distance, using either dS(U1,U2) or

dS(U2,U1). Section 4.3 will show the impact of bi-directional and uni-directional formulations.

We incorporate ωS into the training objective to mediate the latent preferences of users across

domains. This encourages the user representations to be similar while retaining the capacity

to capture domain-specific preferences. Conceptually, this can be formulated as a constrained

optimization problem:

ϑ→ = argmin
ω

ω(D1,D2 | ϑ)

Subject to: ωS(ϑU1 , ϑU2) ⇔ ϖ2

where ω(D1,D2 | ϑ) is the primary recommendation loss function for data from domains D1 and

D2, and ϖ2 is a positive tolerance threshold.

By rewriting the constraint as ωS(ϑU1 , ϑU2) ↗ ϖ2 ⇔ 0, the final objective function for our

end-to-end learning framework using the Lagrange multiplier is derived as:

ϑ→ = argmin
ω

ω(D1,D2 | ϑ) + ς
(
ωS(ϑU1 , ϑU2)↗ ϖ2

)

↖ argmin
ω

ω(D1,D2 | ϑ) + ςωS(ϑU1 , ϑU2) (3.4)

This augmented objective effectively balances the optimization of the primary recommenda-

tion task ω with the continuous and flexible mapping process ωS , therefore promoting the transfer

and adaptation of user preferences across domains by aligning their representations.

Alternatively, this augmented objective can be interpreted within a multi-task learning frame-
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Table 3.1: Datasets stats for four scenarios

Dataset Stats Generic Superset Subset Common
D1 D2 D1 D2 D1 D2 D1 D2

Books #ratings 8,898,041 982,619 8,898,041 967,196 1,319,803 982,619 1,319,803 967,196
— #users 367,982 61,934 367,982 61,236 61,236 61,934 61,236 61,236

Kindle #items 603,668 68,223 603,668 68,079 256,019 68,223 256,019 68,079

Electronics #ratings 6,387,916 1,109,521 6,387,916 648,026 1,230,678 1,109,521 1,230,678 648,026
— #users 694,953 154,813 694,953 81,381 81,381 154,813 81,381 81,381

Cell Phones #items 157,693 47,607 157,693 46,996 134,621 47,607 134,621 46,996

CDs #ratings 1,377,008 123,518 1,377,008 42,872 181,705 123,518 181,705 42,872
— #users 107,546 12,381 107,546 3,720 3,720 12,381 3,720 3,720

Music #items 71,943 9,906 71,943 9,113 49,898 9,906 49,898 9,113

AMZ Books #ratings 223,302 197,140 - - - - - -
— #users 3,353 2,578 - - - - - -

Book Crossing #items 5,752 4,313 - - - - - -

work, where minimizing the transportation cost ωs serves as an auxiliary task that supports and

improves the performance of the primary recommendation task.

The overall learning process, illustrated in Algorithm 2 and Figure 3.3, involves an initial

warm-up phase to learn meaningful user representations, followed by concurrently optimizing

the augmented objective, which incorporates both the recommendation loss and the transporta-

tion cost.

3.3 Experiments

Datasets. For experiments, the first three pairs of datasets are from Amazon1: Books - Kindle

Store; Electronics - Cell Phones and Accessories; and CDs and Vinyl - Digital Music, chosen

based on the assumption that users’ preferences are likely shared between the two domains. For

example, users who enjoy reading books may also be interested in similar Kindle e-books. To

further diversify our analysis, we construct a fourth dataset from two sources: Amazon Books -

Book Crossing2, where the two share the same category of items but from different user sets and

sources.
1https://nijianmo.github.io/amazon/index.html
2https://grouplens.org/datasets/book-crossing/
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Four Scenarios. For comprehensive analysis, we explore four distinct scenarios, based on

the overlap of two user sets U1 and U2, from the generic case with no constraint of users, to

the extreme scenario where only users overlap between two domains are allowed, and the two

middle ground scenarios.

• Scenario 1 (Generic): Any U1 and U2

• Scenario 2 (Superset): U1 ↙ U2

• Scenario 3 (Subset): U1 ∝ U2

• Scenario 4 (Common): U1 = U2

In all four cases, regardless of overlapping, user identities are masked so that the model treats the

same user in two domains as two different users. Table 3.1 summarizes the respective statistics

of the datasets under each of the four experimental scenarios, where D1 and D2 denote the two

domains (e.g., in Books - Kindle Store, D1 is Books and D2 is Kindle Store).

Rating and Ranking Tasks. For evaluation, we employ two recommendation tasks: rat-

ing prediction and ranking prediction. We apply our model-agnostic proposed methods to two

representative backbone models: Matrix Factorization (MF [63]) and Neural Collaborative Fil-

tering (NCF [42]) and evaluate their performance. We use Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) for rating prediction, and Normalized Discounted Cumulative Gain

(NDCG) and Recall with k = 50 for ranking prediction.

Comparative Methods. Due to its novel setting, there is no direct baseline for NO3-CDR.

Previous dual-target cross-domain recommendation studies either (i) utilize shared parameters

from the same users or items, which assumes user or item overlap–an assumption that does not

hold in our setting–or (ii) leverage other data modalities as side information, which are also

unavailable in our case. Therefore, we consider the comparative methods below:

• Base models: We use MF [63] and NCF [42] as backbone models for rating and ranking

tasks, respectively. We combine data from two domains and train with one single model,

with objective function in Equation 3.2.
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Table 3.2: The effects of aggregating user identities across domains for Amazon CDs - Digital
Music dataset. Better results are in bold.

Training CDs Digital Music
RMSE(→) MAE(→) RMSE(→) MAE(→)

Separately 0.6612 0.6103 0.5959 0.5729

Together 0.6299 0.5775 0.5848 0.5621

• SinkhornCF [75]: Infuses Sinkhorn divergence of items into the learning objective. It can

be applied to MF (i.e., SinkhornMF) and NCF (i.e., SinkhornNCF).

• NMF [72]: As recent studies [87, 88] suggest Non-negative Matrix Factorization (NMF)

to be superior to the original MF, NMF is included as a baseline for rating prediction.

• VAECF [80] and its variants are widely used due to their non-linear probabilistic generative

modeling. We include VAECF as a baseline for the ranking prediction task.

We adopt NMF and VAECF, which are considered superior to the backbone models MF and

NCF, to evaluate whether the proposed methods can enhance the backbone models sufficiently

to outperform these two baselines.

Hyper-parameter Tuning. Each dataset is partitioned into training, validation, and test sets

using a chronological proportional split as described in prior works [47, 94], with a ratio of

60/20/20 for training, validation, and test sets. All methods are trained on the training set, tuned

for optimal performance and model selection based on the validation set, and the best models are

evaluated on the test set. We perform random search for hyper-parameter tuning, with the search

space for some key hyper-parameters as follows: learning rate ↔ [0.001, 0.1], embedding size

↔ {64, 100, 128, 256}, and control parameter ς ↔ [0.1, 1.0]. The number of warm-up iterations

for SNO3 and HNO3-CDR is set to w = 5.
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(a) Generic scenario. (b) Superset scenario.

(c) Subset scenario. (d) Common scenario.

Figure 3.4: Rating prediction performances in four scenarios. For RMSE and MAE, the lower
values (→) indicate better results.
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(a) Generic scenario. (b) Superset scenario.

(c) Subset scenario. (d) Common scenario.

Figure 3.5: Ranking prediction performances in four scenarios. For NDCG and Recall, higher
values (↑) indicate better results.
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Table 3.3: Results of different “target” domain on CDs - Music’s four scenarios. Best results are
in bold.

(a) Common scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (→) MAE (→) RMSE (→) MAE (→) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)

None 0.7026 0.6611 0.6854 0.6683 0.0054 0.0134 0.0092 0.0274
D1 0.6942 0.6523 0.6808 0.6637 0.0065 0.0164 0.0082 0.0237
D2 0.7129 0.6716 0.6892 0.6719 0.0069 0.0169 0.0121 0.0360

Auto 0.6942 0.6523 0.6808 0.6637 0.0069 0.0169 0.0121 0.0360
(b) Superset scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (→) MAE (→) RMSE (→) MAE (→) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)

None 0.6103 0.5900 0.5922 0.5790 0.0045 0.0134 0.0124 0.0386
D1 0.6041 0.5836 0.5864 0.5731 0.0046 0.0146 0.0135 0.0395
D2 0.6161 0.5958 0.5969 0.5837 0.0028 0.0085 0.0135 0.0414

Auto 0.6041 0.5836 0.5864 0.5731 0.0046 0.0146 0.0135 0.0395
(c) Subset scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (→) MAE (→) RMSE (→) MAE (→) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)

None 0.6726 0.6277 0.5922 0.5790 0.0035 0.0082 0.0082 0.0234
D1 0.6650 0.6200 0.5864 0.5731 0.0036 0.0089 0.0095 0.0237
D2 0.6824 0.6373 0.5969 0.5837 0.0023 0.0071 0.0048 0.0217

Auto 0.6650 0.6200 0.5864 0.5731 0.0036 0.0089 0.0095 0.0237
(d) Generic scenario

Target domain
Rating prediction Ranking prediction

D1 D2 D1 D2

RMSE (→) MAE (→) RMSE (→) MAE (→) NDCG (↑) Recall (↑) NDCG (↑) Recall (↑)

None 0.7757 0.7349 0.6138 0.6014 0.0035 0.0107 0.0047 0.0130
D1 0.7806 0.7394 0.6192 0.6068 0.0025 0.0085 0.0044 0.0110
D2 0.7709 0.7301 0.6074 0.5948 0.0036 0.0112 0.0055 0.0163

Auto 0.7709 0.7301 0.6074 0.5948 0.0036 0.0112 0.0055 0.0163

3.3.1 Research Questions (RQ) and Discussions

RQ1: The effects of using user identities across domains.

We first investigate the potential benefits of having user identities across domains. We carry out

an experiment to compare the performance of training the model separately and together on the

CDs - Music dataset. We first filter only users who have presented in both domains, then train

the MF model in two different settings: (i) separately, where we train the model on each domain

independently, and (ii) together, where we combine user-item interactions from both domains
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Table 3.4: Results for Amazon Books - Book Crossing dataset. Note that in Amazon Books, the
rating scale is from 1 to 5, while for Book Crossing is from 1 to 10. Best results are in bold,
while second-best results are in italic.

(a) Rating Prediction

Model AMZ Books Book Crossing
RMSE MAE RMSE MAE

MF 0.9080 0.8429 3.3754 3.1218
SinkhornMF 0.8878 0.8289 3.3116 3.1498

NMF 0.8853 0.8226 3.2920 3.0703

MF-HNO3 0.8864 0.8193 3.2564 3.0700
MF-SNO3 0.8865 0.8195 3.2771 3.0701

(b) Ranking Prediction

Model AMZ Books Book Crossing
NDCG (%) Recall (%) NDCG (%) Recall (%)

NCF 0.1075 0.3494 0.1324 0.3268
SinkhornNCF 0.0938 0.2784 0.1667 0.3582

VAECF 0.0786 0.2310 0.1308 0.3453

NCF-HNO3 0.0890 0.2069 0.1168 0.2954
NCF-SNO3 0.1198 0.3709 0.1709 0.3838

and train on the whole data.

Table 3.2 contrasts training the model separately versus jointly on the CDs - Digital dataset.

The results show that joint training reduces both RMSE and MAE for CDs and Music, demon-

strating improved performance over separate training. It aligns with the intuition that shared user

identities can improve predictions across domains. Therefore, effective mechanisms for aligning

user identities can be leveraged to enhance recommendations.

RQ2: How do the two variants NO3-CDR perform?

Figures 3.4 and 3.5 present results across three Amazon datasets for two prediction tasks under

four different scenarios. Comparing against benchmark baselines, we observe distinct behaviors

in each task. For rating prediction (Figure 3.4), the MF-HNO3 and MF-SNO3 variants outper-

form SinkhornMF and NMF, both of which surpass traditional MF. Notably, MF-HNO3 con-
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Table 3.5: Case study in CDs-Music dataset

User in CDs: A117WAVHO1WAIE User in Music: A8QZWK9SUH66P

Items rated Items categories Items rated Items categories

The Commodores R&B, Funk, Pop Doo-Wops & Hooligans Pop, R&B
Earth Wind & Fire R&B, Funk, Soul Waking Up Pop, Rock
Song of Solomon Rock, Pop X Pop, R&B
Carpenters Gold Pop Here’s To The Good Times Pop, Rock

Piano Prophet Jazz, R&B The Fault In Our Stars Rock
The Hunting Party Rock

User in CDs: A28DBLK5JB17P3 User in Music: A167KI3P7XN1AM

Items rated Items categories Items rated Items categories

Led Zeppelin: Box Rock, Metal
Led Zeppelin I Rock, Metal Made In The A.M. Pop, Rock
Led Zeppelin II Rock, Metal

Houses of the Holy Rock, Metal Somewhere In Time LP Rock, MetalAt Your Service Pop, Rock

User in CDs: A28DBLK5JB17P3 User in Music: A1VFOUHOYX29YP

Items rated Items categories Items rated Items categories

Led Zeppelin: Box Rock, Metal Light Me Up Rock, Metal
Led Zeppelin I Rock, Metal Hit Me Like A Man Rock, Metal
Led Zeppelin II Rock, Metal Bad Magic - Motörhead Rock, Metal

Houses of the Holy Rock, Metal Dystopia - Megadeth Rock, Metal
At Your Service Pop, Rock XI Metal - Church Rock, Metal

sistently achieves the best performance, yielding significantly lower RMSE and MAE, followed

by MF-SNO3 as the second-best performer. In contrast, for ranking prediction (Figure 3.5),

the Hungarian-based NCF-HNO3 fails to surpass the NCF baseline, while SinkhornNCF and

VAECF have superior performance over vanilla NCF. Among the NO3 variants, NCF-SNO3

consistently enhances the NCF backbone, achieving the best overall performance. It surpasses

the two strongest NCF-based baselines in most cases, particularly in terms of NDCG and Recall.

The only exceptions are NDCG on the Books domain (Figure 3.5a, top-left) and both NDCG and

Recall on the Electronics and Cell Phones domains (Figure 3.5c, middle row), where Sinkhorn-
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NCF marginally outperforms NCF-SNO3.

The choice between HNO3 and SNO3 depends on the specific recommendation task: HNO3

is more effective for rating prediction, while SNO3 excels in ranking tasks. This is likely due

to the different ways the two backbone models generate item scores. In MF, ratings are directly

predicted from user-item embeddings, which aligns well with the one-to-one matching of the

HNO3 variant. In contrast, NCF generates user-item scores indirectly through multiple feed-

forward neural network layers, which benefits more from the flexible matching SNO3 for ranking

tasks.

RQ3: The scenarios involving two different data sources.

Table 3.4 presents the results of experiments conducted on datasets from two different sources:

Amazon Books and Book Crossing. For the rating task, MF-HNO3 delivers the best performance

in terms of RMSE and MAE, except for RMSE on Amazon Books, where it ranks second to NMF.

SNO3-CDR closely follows behind. In the item ranking task, NCF-SNO3 outperforms the others

in terms of NDCG and Recall, while NCF-HNO3 does not improve upon the NCF baseline.

These findings align with previous results from the three Amazon dataset pairs. This supports

the idea that aggregating data from multiple fragmented platforms can enhance performance.

While more data does not always guarantee better results, effectively guiding the learning process

allows the model to leverage richer information. The results also demonstrate the effectiveness

of the proposed methods in improving recommendations across diverse data sources.

RQ4: Uni-directional versus bi-directional SNO3.

SNO3-CDR offers the flexibility to transport bi-directionally between two “point clouds” U1

and U2. To see whether uni-directional or bi-directional yields superior recommendation, and

whether there is an optimal assignment to each domain as source or target, we analyze three

cases: (i) bi-directional transportation (i.e., no designated “target”), (ii) U1 as “target” point

cloud, and (iii) U2 as “target” nodes.

Table 3.3 compares bi-directional and uni-directional MF-SNO3 and NCF-SNO3 across all

four scenarios of the CDs-Music dataset. In all cases, the best uni-directional method outper-
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forms the bi-directional method, improving results in both domains. No domain consistently

outperforms the other. In three out of four scenarios, selecting one target domain enhances both

rating and ranking predictions. The exception is the Common scenario: for ratings, selecting D1

as the target improves results, while for ranking, choosing D2 yields better performance.

In pursuit of optimal results for the one-sided SNO3, we propose an automatic method to

identify the better “target” domain by selecting the domain with higher user representation vari-

ance. After warm-up epochs, we calculate and compare variances, choosing the domain with

higher variance as the target. This Auto method achieves the best SNO3 results in most cases

(see Table 3.3), except in the Superset scenario, where Auto performs better in D1 but not in D2.

This discrepancy arises due to the extreme imbalance in dataset sizes (Table 3.1): D1 has over 1

million ratings, while D2 has only 42,872 ratings.

RQ5: Should we prioritize matching the same user across domains to enhance recom-

mendation performance?

Users may portray different preferences across platforms, such as purchasing classical music on

CDs and Vinyl and modern trending songs on Digital Music. Our goal is to enhance recommen-

dations on both platforms rather than focusing solely on matching users across domains, as we

assume no overlap in users.

However, though not used in the learning as presumed non-existent, the availability of user

identity information allows us to investigate whether the algorithms match users across domains

correctly. We investigate the user mapping accuracy in CDs - Music dataset’s Common scenario,

using MF-HNO3, since it performs best in rating prediction; and NCF-SNO3 for ranking. Sur-

prisingly, out of 3,720 users across both domains, MF-HNO3 accurately maps only 1 to 3 users

on different runs. While NCF-SNO3 does not output user mapping, we derive the mapping based

on the closest Sinkhorn distances of final user representations, and the result is 0 to 3 correct user

pairs.

HNO3 is a step-by-step learning process and mapping quality solely relies on user representa-

tion derived from the initial learning model. For SNO3, the control variable ς in Equation 3.4 can
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be adjusted to balance recommendation and transportation objectives. However, as ς increases

(favoring user mapping), recommendation performance gradually decreases. The Sinkhorn dis-

tance in SNO3 acts as a flexible bridge between domains, where matching users is not prioritized

to achieve the best recommendation quality.

3.3.2 Case Study: Example Matched User Pairs

Table 3.5 presents three user pairs from the CDs domain along with their corresponding matches

from the Music domain.

In the first pair, both users show similar preferences for a mix of R&B, Pop, and Rock. User

A117WAVHO1WAIE has a diverse taste, enjoying artists like The Commodores, Earth Wind &

Fire, and The Carpenters, ranging from classic R&B and funk to pop. Interestingly, her match

in the music domain, user A8QZWK9SUH66P, also appreciates Pop and R&B, with selections

like Bruno Mars’ “Doo-Wops & Hooligans” and Florida Georgia Line’s “Here’s To The Good

Times”, showcasing a similar inclination to pop and rock.

The second pair, user A28DBLK5JB17P3 in CDs and user A167KI3P7XN1AM in Music,

exhibited more distinct common preferences. They are deeply rooted in rock and metal, espe-

cially classic metal rock. In the third pair, user from the second pair, A28DBLK5JB17P3, is

also the best match for the user in Music, A1VFOUHOYX29YP, who also roots for rock albums,

such as The Pretty Reckless’ “Light Me Up” and “Hit Me Like A Man”.

NCF-SNO3 effectively captures the similarities among intricate user preferences. The con-

solidation of these identified parallels among matched user pairs serves to reinforce the notion

of preference bridging, rather than prioritizing the enhancement of correct matching accuracy.

While the optimal match for a user across domains may not fully align with their unique prefer-

ences, they may exhibit a greater degree of similarity in their preferences compared to their own

preferences in different domains.
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3.4 Discussion

This chapter addresses the challenge of scarce data in recommendation systems. We introduce

the novel scenario of NO3-CDR framework and propose a unique approach to enhance recom-

mendation systems by leveraging connections across distinct yet conceptually similar datasets

from multiple platforms based on user underlying preferences. Our methodology focuses on

bridging the gap between these platforms, enabling mutual improvements in recommendation

quality while respecting user privacy. Empirical experiments demonstrate the effectiveness of

our approach in improving recommendation quality, showcasing its potential to address data

scarcity challenges in fragmented cross-domain recommendation systems.
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Chapter 4

Continual Collaborative Filtering Through

Gradient Alignment

Most real-world recommendation systems operate in dynamic environments, where new users,

new items, and new interactions are continuously introduced. However, the majority of collabo-

rative filtering systems are designed as static models, as they are trained once on a fixed dataset

and deployed without subsequent adaptation. This static assumption fails to capture the evolv-

ing nature of user preferences and item availability, especially in fast-paced domains such as

e-commerce, streaming platforms, and social networks.

There need to be mechanisms to handle the dynamic nature of recommendation systems. The

common remedy is to periodically retrain the model using updated datasets. While this allows

the system to incorporate new data, it suffers from high computational overhead and latency.

Additionally, frequent retraining may be infeasible due to privacy constraints, where older data

cannot be retained or reused.

An alternative approach involves online learning [81, 127] or model fine-tuning, where the

model is incrementally updated with new user-item interactions. Although this reduces the com-

putational burden, it suffers from catastrophic forgetting, where newly acquired knowledge may

overwrite previously learned preferences. This leads to degradation in recommendation quality
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Figure 4.1: If two gradients give same loss for Dt, we prefer the gradient that leverages transfer
between tasks over interference (Fig. 4.1c over 4.1b).

for older users or items.

To address these challenges, we propose a novel framework named Continual Collaborative

Filtering (CCF). This framework formulates the ongoing influx of new users, items, and interac-

tions as a continual learning problem, where the system is exposed to a sequence of tasks over

time, and the system must learn to make recommendations based on both current and past data,

without relying on full retraining or storing all historical data. Our framework tries to balance

the trade-off between stability (to retain past preferences) and plasticity (to rapidly learn new

examples) without growing capacity proportionally with streaming data. This, in a nutshell, is

the crux of this chapter: designing a continual learning framework for collaborative filtering,

investigating and analyzing methods for balancing learning ability and retention in continual

collaborative filtering setting.

4.1 Problem Formulation

To better assess the stability-plasticity dilemma, we propose a Continual Learning framework and

evaluation protocol for recommender systems with clear definitions of tasks, goals, and metrics.

Tasks and Goals Over time, new users keep appearing and existing users continue to interact

and explore new items. We could treat each group of users as a new “task”. However, old
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Figure 4.2: UACF desired learning path. Ovals are low-loss regions for individual groups. Nor-
mally, model updates towards average gradient over all groups of users, and finally ends up at
the center of the triangle. Our algorithm learns group by group to find the optimal path to the
intersection.

items might still attract users even as new items are offered to users. Thus, we propose a novel

continual learning setting for recommender systems, where interactions keep expanding on both

user and item sides. We define a task as compartmentalization of users and items, as illustrated

in Figure 4.1a. Suppose we order the dimensions of R, i.e., users and items, according to the

time they first emerge. In that case, a task corresponds to a block of users and items that appear

over a specified period of time1. Within a new task, we see ratings corresponding to earlier users

on new items, new users on earlier items, new users on new items, and potentially new ratings

by existing users on old items. While observing the data periodically, the objective is to learn a

generalized recommendation model that not only could capture recent preferences but also retain

previous users’ interest.

Notation: We index users by u ↔ {1, . . . , U} and items by i ↔ {1, . . . , I}, which form

the user-item interaction matrix R ↔ NU↑I . We denote T as the number of tasks in continual

learning setting, which in theory is infinite. We refer to the set of observations within a task t

as Dt ↔ RUt↑It , where Ut, It are the number of users and items in task t, respectively. Ut+1 >

1Note that there is flexibility in how a task is defined, depending on specific application scenarios. For instance,
it would also be possible to define a task in terms of only new items, with the assumption that all users are present
throughout.
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Ut, It+1 > It, which reflects ever-growing systems acquiring more users and items. We use ω as

model-agnostic loss function for general collaborative filtering algorithm.

“Multi-Task” Collaborative Filtering In a typical offline batch learning manner, the objec-

tive is to learn the set of user and item parameters ϑ that minimize the loss over i.i.d. distribution

samples within dataset D ↔ RU↑I :

ϑ→ = argmin
ω

Erui↔D [ω (rui | ϑ)] (4.1)

The above assumes a task-agnostic setting with an arbitrary loss function. Given multiple

tasks, the learning objective turns into minimizing total loss for every observed user and item,

over all the tasks:

ϑ→ = argmin
ω

T∑

t=1

Erui↔Dt [ω (rui | ϑ)] (4.2)

However, this loss function presumes that all tasks are observed at once.

“Online” Task Learning In the continual learning context of interest in this work, each task

appears sequentially. Access to past tasks’ data is prohibited. We learn each task consecutively.

At each time step t, we leverage the prior parameters ϑ→t↓1 as initialization (i.e., transfer learning),

to minimize loss over current dataset Dt to arrive at new parameters ϑt. This is equivalent to the

task-level online learning objective.

ϑ→t = argmin
ωt

Erui↔Dt

[
ω
(
rui | ϑ→t↓1, ϑt

)]
(4.3)

The sequential nature of tasks implies that as we handle tasks over time, the model parameters

tend to favor recent tasks. Over time, they may no longer fit the earlier tasks well, resulting

in lower performance for older users and items. This phenomenon is known as catastrophic

forgetting [36, 96].

Training and Test Protocol By default, at task t, the model is initialized from previous

model fωt→1 and can be trained in offline batch learning setting using data of current task Dt,
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while access to past samples D1,...,t↓1 is forbidden. After learning, the model performs on test

set of every seen task (i.e., Dtest
1 , . . . ,Dtest

t ) without revealing task identities (i.e., single-head

setting). This protocol is called fine-tuning.

Metrics Conventionally for Collaborative Filtering, we have two sets of metrics: rating and

ranking. In this chapter, we adopt Mean Square Error (MSE) for rating metric. For ranking,

Recall (Hit ratio) is used to measure the ranking effectiveness of recommendation model. Besides

measuring performance for individual tasks, it is also crucial to monitor how the learning process

affects across tasks. The goal is to quickly learn current task to satisfy immediate new users while

preserving existing preferences. For each base metric above, we construct the matrix a ↔ RT↑T ,

where aij is performance on task j after observing task i. To aggregate performance across tasks,

we derive these two metrics:

• Learning Average (LA)
1

T

∑T
i=1 ai,i: to measure learning ability, how good a model is at

learning tasks and whether it benefits from previously learned tasks.

• Retained Average (RA)
1

T

∑T
i=1 aT,i: to measure learning retention and improvement af-

ter learning the final task. The overall average will be the average performance of every

learned task up to the time of testing.

With limited capacity, one system cannot preserve perfect recall of previously learned tasks

while also absorbing huge data from an arbitrary number of tasks, which refers to the stability-

plasticity dilemma. Given that contradiction, we further propose a combined measure, which

is the harmonic mean of learning average and retained average. This metric is the aggregated

number that conveys the overall goodness of a Continual Collaborative Filtering model.

Harmonic mean =
2 ′ LA ′RA

LA+RA

Since rating metrics are better when lower, the corresponding continual metrics are better

when lower. Conversely, ranking metrics are better when higher.
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4.2 Methodology

Continual learning optimization resembles a tug-of-war, where tasks, users, or instances desire to

pull the parameters towards their own specific objectives. When numerous “players” participate,

pulling parameters in different directions, this process may become unending. We propose an

algorithm that leverages user embeddings to identify and group similar users with similar under-

lying preferences. Specifically, we employ k-means clustering within the user embedding space.

The rationale is that users with proximate embeddings are likely to share common preferences.

By aligning the learning process across these user groups and optimizing them sequentially, we

aim to mitigate gradient interference among these disparate users.

The grouping offers several benefits: it enhances collaboration within each group, as users

with similar preferences “agree” on parameter updates, facilitating modeling for less active users.

It also reduces the number of “players” in the tug-of-war, leading to more stable task learning.

Additionally, the algorithm can be extended to scenarios with immediate rewards, such as real-

time systems where user-item interactions are streamed. In such cases, the system can learn and

satisfy a group of users promptly through online learning before proceeding.

The transfer of user grouping occurs within individual tasks, so in addition to in-task transfer,

we aim to maximize transfer across tasks by utilizing episodic memory M, which is a fixed-size

memory that represents all past tasks that we sample throughout the learning process by reservoir

sampling [136]. We apply task alignment between current task Dt and episodic memory M to

further reach greater “agreement” among users. In summary, User Alignment for Collaborative

Filtering (UACF) objective is:

ϑ→t = argmin
ωt

E
(( ∑

g↗Gt

ω(Gg | ϑt)↗ ε
g↓1∑

j=1

↼ω(Gg)

↼ϑt
⇑ ↼ω(Gj)

↼ϑt

)
↗ϖ

↼ω(Dt)

↼ϑt
⇑ ↼ω(Mt)

↼ϑt

)
(4.4)

where Gt is the set of user groups at task t, obtained through k-means clustering from Dt. The
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parameters ϖ and ε are the control regularization for episodic memory and group alignment,

respectively. The visualization of this concept is shown in Figure 4.2.

4.3 Experiments

The main experimental objective is to show evidence that catastrophic forgetting indeed occurs,

and how the continual learning approaches address it towards balancing the learning ability and

retention of previously learned tasks.

4.3.1 Experimental Settings

Datasets We experiment on different sources of dataset: three categories of Amazon Product

Review Dataset2 (Books, Kindle store, Movies and TV) and MovieLens Ratings Dataset3. These

are categories where older items remain relevant for a long time. To simulate the expansion in

users and items over time, we split the datasets chronologically into five tasks as illustrated in

Figure 4.1a. Five tasks were chosen, as they are commonly used in popular continual learning

datasets (e.g., Split-MNIST, Split-SVHN, Split-CIFAR [1, 103]). Each task was divided to in-

troduce a roughly equal number of new users and items. Table 4.1 summarizes the task-wise

splits.

Base Models Our proposed methods are model-agnostic that can plug into different collab-

orative filtering models. In the experiments, we adopt two base models from basic linear model

MF [63] to neural networks-based, NCF [42]. These are among the major methodologies for

collaborative filtering.

Comparative Methods Under investigation is the framework of dealing with the contin-

ual learning setting itself. To that extent, the most apt baselines would be those considered

classical approaches to continual learning (fine-tuning, experience replay). In addition, we com-
2http://jmcauley.ucsd.edu/data/amazon
3https://grouplens.org/datasets/movielens
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Table 4.1: Task-wise statistics of four datasets

Dataset Stats Total Task 1 Task 2 Task 3 Task 4 Task 5

books
#ratings 1,960,674 228,399 348,435 365,906 455,571 562,363
#users 38,121 7,624 15,061 19,721 22,796 27,916
#items 35,736 7,147 13,153 18,487 23,719 27,593

kindle
#ratings 438,994 35,736 68,602 90,899 110,106 133,651
#users 8,533 1,706 3,353 4,873 6,102 7,359
#items 10,068 2,011 4,023 5,931 7,563 8,704

movies
#ratings 684,453 61,447 105,429 111,300 170,052 236,225
#users 16,002 3,104 6,191 8,763 11,449 13,541
#items 9,774 1,954 3,900 5,683 7,554 9,330

movielens
#ratings 1,000,209 39,962 137,431 202,555 299,256 321,005
#users 6,040 1,198 2,408 3,610 4,820 6,007
#items 3,706 699 1,391 2,039 2,808 3,485

pare the various adopted gradient alignment-based methods from the literature (Reptile [102],

MER [118]). However, rather than simply measuring which method is better or worse, we set

out to show and understand the trade-off between stability and plasticity that afflicts various

models in different ways.

• Finetuning: standard transfer learning setting, the objective is to enrich the model with

new data (Equation 4.3), favoring current data for immediate good performance. However,

without revision of previous users, the data-driven model quickly forgets and provides poor

recommendations for distant users.

• Experience Replay (ER): common approach for continual learning [119]. It involves keep-

ing some samples from previous tasks in a memory buffer M and replaying them with

novel inputs, using reservoir sampling to select samples with equal probability. The objec-

tive, as shown in Equation 4.5, is to learn parameters that fit the current tasks Dt as well

as samples from earlier tasks in M. While this lessens forgetting, it may not completely

prevent it, as the remnants of each task in M are relatively small. Additionally, since the

model capacity is limited, paying attention to revision would affect its learning ability.

ϑ→t = argmin
ωt

Erui↔Dt↘M
[
ω
(
rui | ϑ→t↓1, ϑt

)]
(4.5)
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Table 4.2: Finetuning results with MovieLens dataset

(a) MSE(→) for MF-based model. (b) Recall(↑) for NCF-based model.
FT T1 T2 T3 T4 T5 FT T1 T2 T3 T4 T5
T1 1.1805 - - - - T1 0.7691 - - - -
T2 1.2140 1.0871 - - - T2 0.0891 0.7100 - - -
T3 1.2674 1.2623 1.1464 - - T3 0.0137 0.0180 0.7096 - -
T4 1.2797 1.2749 1.2713 1.1514 - T4 0.0035 0.0046 0.0022 0.7316 -
T5 1.2781 1.2740 1.3142 1.3313 1.1726 T5 0.0014 0.0011 0.0005 0.0032 0.7254

• Reptile: gradient alignment-based method which maximizes transfer between current task

and memory buffer. The objective function is shown in Equation 4.6.

ϑ→t = argmin
ωt

E
(
ω(Dt | ϑ→t↓1, ϑt)↗ ϖ

↼ω(Dt)

↼ϑt
⇑ ↼ω(Mt)

↼ϑt

)
(4.6)

• MER [118]: derived gradient alignment at two levels, instance- and user-level.

Metrics Our objective is to closely monitor the base models in order to track performance

changes over time. Consequently, we employ the traditional rating metric, Mean Squared Error

(MSE) for MF-based models, as MF is renowned for rating prediction and optimized for MSE.

Conversely, for NCF, which is optimized for ranking, we utilize the ranking-based Recall@5

metric. We follow training and test protocol described in Section 4.1 to obtain metric matrices.

We report the overall matrices of metrics to observe model’s behavior for each method and

compare Harmonic mean that balances learning average (LA) and retained average (RA).

Hyper-parameters tuning. For all methods, at each task, the task’s ratings are divided

into train/validation/test sets. With rating prediction model, MF, we adopt proportional split

in [47, 94] by ratio 60/20/20; while for NCF, we follow leave-one-out evaluation as original

paper [42], the last item of each user is used for test and the second to last for validation. The

number of user groups is fixed at 10 for all datasets. For each method, we carry out experiments

with multiple (i.e., 5) random seeds and report the average over all runs.
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Figure 4.3: Results of comparative methods on four datasets. MSE on MF-based model is on the
left while Recall for NCF is on the right. Note that for MSE, the lower is the better performance
and for Recall, the higher indicate better result.

4.3.2 Results and Insights

Research Question 1: Does the forgetting issue exist in Continual Collaborative Filtering set-

ting? Parameter sharing is the cause of catastrophic forgetting. Learning new tasks without

proper revision of previous ones leads to forgetting of learned tasks. In MF, which is a linear

model, users share parameters on representation of items; while neural networks-based NCF

model, both user and item sides further share weights of layers. Intuitively, MF-based model

would be affected less and NCF-based would suffer severe forgetting issue. We follow the set-

ting in Section 4.1 and observe matrices of MSE performances with MF-based model and Recall

results with NCF-based model for MovieLens dataset in Table 4.2, where each column Ti is per-

formance of task i over time, while each row Tj is result of all the task after training task j. As it

proceeds to learn new tasks, the MF model slowly performs worse, which is shown in the gradual

increase of MSE. On the other hand, NCF dramatically forgets all the learned tasks, as indicated

by how Recall drops to near 0. This showcases that catastrophic forgetting indeed occurs in the

context of collaborative filtering.

Research Question 2: Overall, how does UACF perform? Further results on four datasets,

Amazon books, kindle, movies, and MovieLens are shown in Figure 4.3. For MF-based model,

UACF achieves similar learning average and better retained average than other methods in three
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Amazon datasets out of the four.

With neural networks-based model, NCF, the results are consistent over all four datasets,

where UACF acquires competitive learning ability as Finetuning and the best retention rate.

Overall, UACF with NCF base performs the best on harmonic mean of LA and RA.

4.4 Discussion

We show that catastrophic forgetting indeed occurs in collaborative filtering and formulate a

continual learning framework for recommendation systems. While Experience Replay stems the

extent of forgetting, this comes at the cost of not being as quick to react to new observations.

For a better balance, we explore gradient alignments novelly at user level. Experiments demon-

strate that the proposed method, UACF, alleviates forgetting significantly while being flexible for

learning new tasks, and together achieve a better balance between learning ability and retention.

However, as the proposed UACF requires clustering users at each task, this requires computa-

tional overhead compared to Reptile and MER. This trade-off might be acceptable for small to

medium datasets, but it may not be feasible for large-scale datasets. Future work could explore

more efficient clustering methods or alternative approaches to enhance transfer and mitigate in-

terference without clustering.
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Chapter 5

Compositions of Variant Experts for

Integrating Short-Term and Long-Term

Preferences

Session-based recommendation systems have gained significant attention in recent years, as they

reflects the dynamic nature of user preferences and sequential behaviors. These systems aim to

predict the next item a user is likely to interact with, based on their previous interactions within

a session. While session-based models emphasize the importance of short-term behavior within

a single session, user preferences are not solely determined by their recent interactions; they

are also influenced by their long-term preferences, which are shaped by their historical behavior

over a more extended period. This chapter explores the integration of short-term and long-term

preferences in session-aware recommendation systems, proposing a novel framework namely

Compositions of Variant Experts (COVE) to effectively capture and leverage these preferences.

This chapter investigates the integration of short-term and long-term user preferences in

session-aware recommendation systems. In particular, it explores how different temporal aspects

of user behavior can be modeled to improve the accuracy and personalization of recommenda-

tions. An illustrative example is shown in Figure 5.1, where a user with a long-standing interest
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Figure 5.1: User A might want to be recommended a rock song based on their long-term interest
in rock and hiphop, rather than a pop song based on their short-term interest in a trending pop
song.

in rock and hip-hop music is currently listening to a trending pop track. A system that naively

relies on the current session may recommend more pop music, disregarding deeper user inclina-

tions. Conversely, ignoring the session context may result in irrelevant suggestions that fail to

respond to recent interests. Understanding and effectively exploiting these preferences can lead

to more accurate and personalized recommendations.

Integrating short-term and long-term preferences poses several challenges. Existing session-

based recommendation models often focus on capturing short-term preferences, neglecting long-

term preferences. On the other hand, traditional recommendation models that capture long-term

preferences may not be suitable for session-aware recommendations due to the lack of ability

to model sequential user behavior. We propose novel compositions of variant experts (COVE)

framework that can integrate both short- and long-term preferences to enhance recommendation

performance by leveraging the strength of multiple types of experts working in concert.

This chapter contributions are threefold. First, we explore the existence and impact of short-

versus long-term preferences in session-aware recommendation systems in section 5.1. Second,

we propose the Compositions of Variant Experts (COVE) with two main variants, which dynam-

ically integrate short- and long-term preferences in section 5.2. Third, in section 5.3, we conduct

extensive experiments to demonstrate the effectiveness of the proposed models and analyze the

impact of the variant expert types, the number of experts, as well as the gating mechanism.
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Table 5.1: Notations

Symbol Description

P = {1, . . . , p, . . . , N} the set of N items, N = |P|
U = {1, . . . , u, . . . ,M} the set of M users, M = |U|
Su
t = ∞pt,1, pt,2, . . . , pt,K∈ user u’s session at time period t with a total of K items
Cu

1:T = ∞Su
1 , S

u
2 , . . . , S

u
T ∈ set of user u’s sessions from time period 1 up to time period T

{f1, fi, . . . , fn} the set of n experts
f (u, Cu

1:T ) ↓ RN predicted scores of N items
hu
t user u representation up to time t

!(p) item p representation
ε(p) item p bias

g(pm,t) n↗dimensional output of the gating function w.r.t. item input pm,t

g(pm,t)i i↗th component of g(pm,t)

5.1 Problem Formulation

Let P be the universal set of items, where N = |P| is the total number of items. Let U be

the set of users, M = |U| is the total number of users. A user u ↔ U interacts with several

items within a short span of time, denoted t, forming a session Su
t = ∞pt,1, pt,2, . . . , pt,K∈, where

pt,k ↔ P , ∋k ↔ {1, 2, . . . , K}, K is the total number of items in session Su
t . All of these

user interactions from multiple sessions in chronological order Cu
1:T = ∞Su

1 , S
u
2 , . . . , S

u
T ∈ reflect

both user short-term within a session and long-term preferences which are items across all the

sessions. We presuppose the most recent session Su
T of Cu

1:T is the current browsing session of

user u. The main task is to predict the next probable item pT,K+1, where K is the total number

of items in the current session Su
T .

Let f be an “expert”, in this case, a model, defined as a function f (u, Cu
1:T ) ↓ RN that maps

an input set of sessions from user u, Cu
1:T , to an N↗dimensional vector of real values, where each

value denotes the predicted ranking score for an item. In this article, we use the terms “expert”

and “preference model” interchangeably.

Here, we discuss the categorization of f into two, i.e., short-term expert and long-term expert.

The following properties are useful in determining to which category an expert belongs.
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Property 1 (SINGLE SESSION PROPERTY) The model processes only one session at a time,

without any cross-session interactions. Specifically, when provided with multiple sessions,

the model considers only the most recent one, i.e., f (u, Cu
1:T ) = f(u, Su

T ).

Property 2 (USER INDEPENDENCE PROPERTY) Given an identical sequence of input items, the

model, denoted as f , always produces the same output regardless of user-specific informa-

tion. Formally, for any two users u ≃= u≃, f(u, Cu
i:j) = f(u≃, Cu↑

i↑:j↑), ∋Cu
i:j = Cu↑

i↑:j↑ , i ⇔

j, i≃ ⇔ j≃.

Based on these two properties, short-term and long-term preference model are formally de-

fined as follows:

Definition 1. (SHORT-TERM PREFERENCE MODEL) A model is considered as a short-term

preference model if both Property 1 and Property 2 hold. In particular, a short-term preference

model f (u, Cu
1:T ) takes as input a single sequence of items Su

T (following Property 1) and aims

to predict the next probable item pT,K+1. The model is user independent, meaning for the same

input sequence, it always produces the same output regardless of the user, i.e., f (u, Su
t ) =

f(u≃, Su↑
t↑ ), ∋Su

t = Su↑
t↑ , u ≃= u≃.

Definition 2. (LONG-TERM PREFERENCE MODEL) A model is considered as a long-term pref-

erence model if either Property 1 or Property 2 does not hold. A long-term preference model

f (u, Cu
1:T ) considers historical sessions Cu

1:T or user u, or both as inputs to predict the most

probable item pT,K+1. The long-term model is user-dependent, meaning for two users u and

u≃, u ≃= u≃, the model may produce different outputs given the same historical sessions, i.e.,

△f(u, C) = f(u≃, C). Additionally, a model that considers more than one session is also a long-

term preference model. The long-term preference model may learn user underlying preferences,

concentrated into a dense representation hu or model the inter-session relations instead of one

single session.

A short-term preference model operates solely on the interactions occurring within the cur-

rent session, without incorporating any external information such as user demographics, histori-
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Input for long-term models

Input for short-term models
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Figure 5.2: An illustrative example distinguishing inputs for long-term and short-term preference
models.

cal preferences, or side data. This makes it well-suited for scenarios where long-term user data is

unavailable or irrelevant. A notable example of a short-term preference model is GRU4REC [51],

which utilizes Gated Recurrent Unit (GRU) [17], widely used to model sequential data such as

text. GRU4REC processes a sequence of recently interacted items to generate recommendations,

focusing exclusively on short-term engagement patterns rather than long-term user history. For

better illustration, we highlight the inputs of short-term preference model in the red box in Fig-

ure 5.2.

A long-term preference model leverages stored user information–such as user representation

or historical interactions–to enhance future recommendation predictions. It could vary from

general collaborative filtering to sequential models which utilize previous sessions together with

the current one. For instance, Bayesian Personalized Ranking (BPR) [114] takes a user as input

to produce a personalized list of recommended items (green box in Figure 5.2). Another example

instance of long-term preference model, HGRU4REC [109], uses an additional GRU layer to

model all previous sessions of the same user into a condensed representation, which is combined

with the current session for next-item prediction.

To further verify the existence of short-term and long-term preferences in session-aware rec-
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ommendation systems, we conduct an empirical analysis on the public Diginetica1 and Retail-

Rocket2 datasets. Here, we particularly analyze the recommendation performance of two can-

didate models: one that only models long-term preferences without short-term preferences, and

the other vice versa. In particular, we use two representative models, GRU4REC [51], which

models short-term preferences through sequential session interactions, and BPR [114], which

captures long-term user preferences through user-item interactions. More details on the datasets

are provided in subsection 5.3.1. In these datasets, user interactions occur in sessions, where

each session consists of a sequence of item interactions within a given time window, and users

may have multiple sessions over time. We hypothesize that there exist both short-term and long-

term preferences in session-aware recommendations. To validate this hypothesis, we evaluate

the recommendation effectiveness of BPR and GRU4REC using the same training data but for-

matted to suit each model’s input requirements. BPR processes a user-item interaction matrix

without sequential information, while GRU4REC takes a sequence of recently interacted items

as input. Both models generate ranked recommendation lists as next item prediction. To de-

termine whether an item aligns more with short-term or long-term preferences, we compare the

ranking of the ground truth item in the test set. If BPR ranks the item higher than GRU4REC,

we classify it as a long-term preference (bit = 1). Conversely, if GRU4REC ranks it higher, we

classify it as a short-term preference (bit = 0). In cases where both models rank the item equally,

we assign a value of 0.5.

The histograms in Figure 5.3 visualize the distribution of long-term bits (as a fraction) across

the test datasets. While some users have extreme long-term preferences, with an average long-

term bit value of 1, others do not have any long-term interest with a value of 0. The average

values are 0.39 and 0.38 for Diginetica and RetailRocket datasets respectively, indicating that

short-term preferences are slightly more dominant.

Through this empirical analysis, we observe that there exists both short-term and long-term
1https://competitions.codalab.org/competitions/11161
2https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
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Figure 5.3: Histogram of user preference values

preferences in personalized sequential recommendation, which can drive user behavior differ-

ently given their personal preferences. Effectively modeling and balancing these factors hold

promise for enhancing recommendation quality, thereby improving user engagement.

5.2 Methodology

In this section, we discuss the use of variant experts for session-aware recommendations. The

core idea is to leverage different types of both short-term and long-term preference models as

experts, each providing unique insights into the data, that collectively combine the strengths of

different experts to create a more effective recommendation model.

5.2.1 Preliminary

Here, we discuss background knowledge of well-known Mixture-of-Experts methods including

continuous mixture of experts and sparse mixture of experts.

Mixture-of-Experts. (MoE) model [56] is designed to increase the model’s capacity while

maintaining low computational costs by using multiple “experts”. This gating mechanism al-

locates input tokens to different experts, making each expert specified with distinct input data.

There are several ways to implement the gating network g(x) [18, 40, 160], but a simple and
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commonly used approach is to apply a softmax function over the logits produced by a linear

layer [124]:

g(x) := Softmax(x ·Wg) (5.1)

where Wg represents the learnable parameters of the linear layer and Softmax formula is given

as follows:

Softmax(zi) =
exp(zi)∑
j exp(zj)

(5.2)

Continuous Mixtures of Experts. Mathematically, the continuous MoE model can be for-

mulated as:
n∑

i=1

g(x)ifi(x) (5.3)

where g(x)i is the i↗th component in the n↗dimensional outputs, for the i-th expert fi(x).

Here, each expert fi receives the same input x but is weighted differently based on the gating

output. The learnable gating function dynamically determines the contribution of each expert,

assigning higher weights to more relevant experts. In this continuous MoE framework, all experts

participate in the final aggregation, with their influence proportional to their assigned weights.

Sparse Mixtures of Experts (SMoE) [124]. SMoE is a variant of MoE that selects only the

top-K experts based on the gating function, reducing computational costs by routing the input

through a subset of experts. The SMoE gating mechanism is defined as:

G(x) := Softmax(TopK(x ·Wg)) (5.4)

where (TopK(l))i := li if li is within the top-K values l ↔ Rn and (TopK(l))i := ↗▽ otherwise.

This ensures that only the most relevant experts receive nonzero gating weights after applying

the softmax function.
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The final output of SMoE is then computed as:

n∑

i=1

G(x)ifi(x) (5.5)

Top-K experts selection in SMoE maintains model expressiveness while significantly improving

efficiency.

5.2.2 Composition of Variant Experts via Hidden Factors (COVEh)

Here, we introduce the Composition of Variant Experts (COVE), which differs from the tradi-

tional Mixture-of-Experts approaches in several key ways. First, instead of employing multiple

instances of identical feed-forward network (FFN), COVE leverages different types of experts.

Particularly, these experts can include various recommendation models, such as collaborative

filtering models (e.g., BPR [114]) for capturing user preferences and sequential models (e.g.,

GRU4Rec [51]) for modeling session-based interactions. Second, each expert interprets the

same input data differently, offering diverse perspectives. For example, BPR treats input data

as user-item interactions, while GRU4Rec models sequential behavior. Third, because each ex-

pert digests input data differently, during training, all experts are trained simultaneously to give

all experts the ability to generalize; during inference, only the most relevant experts are activated.

Fourth, we standardize the Compositions of Variant Experts so that each expert can determine

its own input to the routing gate, which is then aggregated to produce the input to the gating

mechanism. More details will be discussed in the next paragraphs.

Standardized Variant Experts. Various type of experts may produce various type of out-

puts from various type of inputs, providing unique insights into the data. For example, BPR

learns from triplet user-positive-negative item interactions, optimizing rankings to favor positive

items, providing robust user and item representations. In addition, GRU4REC captures tempo-

ral user behaviors by predicting the next item in a sequence of interactions, relying sorely on

item sequence for input and optimizing the ranking of the next item accordingly. By integrating
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diverse expert models, we achieve a more comprehensive understanding of user behavior and

preferences.

Despite their differences, we standardize the output of all experts including three compo-

nents:

• Hidden context representation: d↗dimensional vector that captures the user u context up

to time T

hi(u, T ) = #i (u, C
u
1:T ) ↔ Rd (5.6)

• Item embeddings: !(p) ↔ Rd is a d↗dimensional vector representation of item p

• Item bias: ε(p) ↔ R is a scalar representing the bias of item p

Each expert serves as a sub-model. Using a gating mechanism, the three components from

all experts are aggregated to form the final representations. We named this approach COVEh as

the aggregated components are hidden representation from variant of experts.

Gating Mechanism. The gating mechanism determines the relevance of each expert based

on the input data, enabling the model to dynamically select the most appropriate experts for a

given context. More concretely, the contribution of each expert is decided upon the model re-

ceiving the inputs via the gating mechanism. By learning the contribution of each expert, the

model can adapt to diverse user behaviors and preferences, ultimately enhancing recommenda-

tion quality.

Each of the n experts determines its own d↗dimensional input to the gating mechanism, de-

noted as ei(u, Cu
1:T ). These individual inputs are then aggregated to form an n⇑ d↗dimensional

input for the gate. This design allows for flexibility in selecting the most relevant features for the

gating mechanism, tailored to each expert. For instance, given a specific input, user representa-

tions might be crucial for the gate in BPR, whereas GRU4Rec may utilize embedded input items

as gate inputs. Once computed, all experts’ gate inputs are aggregated and passed through the

gating mechanism.

In this work, we employ the simple gate mechanism consisting of a fully connected layer
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with a softmax activation function. This ensures that the gate assigns a weight to each expert

while maintaining a total sum of 1. Particularly, the gating mechanism can be represented as:

g (u, Cu
1:T ) := Softmax

(
Wg

[
ei (u, C

u
1:T )

∣∣∣
n

1

])
(5.7)

where ei (u, Cu
1:T ) is the i-th expert’s gate input,

[
ei (u, Cu

1:T )
∣∣∣
n

1

]
denotes the concatenation of all

gate inputs, and Wg is the trainable weights. The output of gate g (u, Cu
1:T ) ↓ Rn is subsequently

used to weigh the contributions of the experts’ outputs to the final representation.

Training Variant Experts. Our COVE framework enables each expert to process input data

differently. During training, all experts are optimized simultaneously to collectively provide a

comprehensive view of the data. This approach ensures that each expert learns distinct aspects

of the data, contributing to the final recommendation.

The gating mechanism determines the contribution of each expert based on the input data.

The final hidden representation, item embedding, and bias term are computed as weighted sums

of the corresponding components from all experts, where the weights are determined by the

gating function:

h(u) =
n∑

i=1

g (u, Cu
1:T )i ⇑ hi(u, T ) (5.8)

!(p) =
n∑

i=1

g (u, Cu
1:T )i ⇑!i(p) (5.9)

ε(p) =
n∑

i=1

g (u, Cu
1:T )i ⇑ εi(p) (5.10)

where g(u, Cu
1:T ) is derived from Equation 5.7, and hi(u, T ),!i(p), εi(p) represent the hidden

context, item embedding, and item bias deriving from the i↗th expert.

The final item score for a user u and item p is computed by taking the dot product between
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the hidden representation and item embedding, and then adding the item bias:

r̂u,p = h(u) ·!(p) + ε(p) (5.11)

Input: !, #!:#$ , $

Gate

Expert 1 Expert & Expert '

"̂!,# = ℎ % ⋅ Ψ ( + *(()((!, #!:#$ )

ℎ! %, & , Ψ! ( , )!(()

… …

ℎ" %, & , Ψ" ( , )" (()
ℎ # %

, & ,
Ψ#

( , )
#((
)

%#(', )#:%& ) %!(', )#:%& ) %"(', )#:%& )

Figure 5.4: Overall flow of COVEh variant. All experts receive user identity u with their his-
torical interactions Cu

1:T and candidate item p. Each expert i then returns the current context
representation hi(u, T ), item embeddings !i(p), and item biases εi(p).

Learning objective. The general learning objective is to enhance ranking performance be-

tween positive and negative items in the candidate set. Its primary objective is to maximize the

probability that positive items are ranked higher than negative ones. This can be achieved by

minimizing the negative log-likelihood:

ω = ↗ 1

NI
log ↽(r̂i ↗ r̂j) (5.12)

where r̂i and r̂j denote the predicted scores for a positive item (a preferred item) and a negative

item (an unobserved or less preferred item), respectively, and NI is the total number of item

pairs. This formulation treats all negative items equally, ensuring uniform optimization across

the training samples.

In practice, however, the learning dynamics differ between popular and long-tail items. Pop-

ular items are frequently sampled and updated during training, while long-tail items (those with

fewer interactions) receive less attention. As a result, the prediction scores for long-tail items
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tend to remain low, making them “easy negatives” that do not significantly impact the optimiza-

tion process. By contrast, distinguishing between positive items and popular negative items is

more challenging.

To address this imbalance, BPR-max loss incorporates the softmax score corresponding to

each negative item in the candidate set so that it assigns lower weights to these easy negatives,

allowing the model to focus more on harder negatives, minimizing the following loss:

ω = ↗ log
∑

i

NI∑

j=1

sj↽(r̂i ↗ r̂j) (5.13)

where sj = exp(r̂j)
∑NI

k=1 exp(r̂k)
is the normalization score of the negative item j via the Softmax func-

tion. By prioritizing these challenging comparisons, the model promotes more effective learning

and improves its ability to rank positive items accurately across a diverse set of candidates.

Inference. In our unique framework, each expert observes input data differently, so in the

training phase, we employed the continuous gate mechanism. During inference, we derive the

final prediction using sparse gate mechanism, where only the most relevant experts are activated

based on the input data. This routing mechanism allows the model to dynamically select the

most appropriate experts for the given context, reducing the computational cost since there only

k experts were selected. We entrust the routing mechanism to choose the best experts. Following

Equation 5.5, the hidden representation during inference is computed as:

h(u) =
n∑

i=1

G(u, Cu
1:T )ifi(u, C

u
1:T ) (5.14)

where G(u, Cu
1:T ) is the sparse gate defined in Equation 5.4.

5.2.3 Composition of Variant Experts via Scoring Function (COVEs)

We propose another approach for aggregation that offers greater flexibility but shallower expert

connections. Unlike COVEh which experts are combined at hidden representation level, this
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Figure 5.5: Overall flow of COVEs variant. All experts receive user identity u with their histor-
ical interactions Cu

1:T and candidate item p. Here, each expert i just returns its predicted scores
for the set of candidate items r̂i.

approach, referred to as COVEs, gathers item scores predictions from individual experts.

Specifically, each expert generates predicted item scores directly, which are subsequently

combined using a weighted sum via the same routing mechanism. This method offers greater

flexibility compared to the COVEh approach, as it does not require experts to share the same

hidden dimensions, provided that an expert is capable of providing scores over the item set. This

approach bears resemblance to a learnable ensemble method, yet it possesses the advantage of

trainable aggregation weights that can adapt dynamically to varied contexts. Consequently, the

application of the same set of experts may result in varying weights, depending on the specific

context.

The final ranking scores for all items are formally computed using the gating aggregation as

follows:

r̂ =
N∑

i=1

g (u, Cu
1:T )i r̂i (5.15)

where r̂i ↔ RN denotes the scores of all items provided by the i-th expert.
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5.3 Experiments

In this section, we evaluate our proposed COVE in the task of session-aware recommendation,

mainly on two publicly available benchmark datasets. The improvement in ranking performance

validates the effectiveness of our solution.

5.3.1 Experimental Setup

Datasets. Recent studies have identified several widespread flaws in recommendation systems,

including dataset-task mismatch and negative sampling during testing, which hinder accurate

evaluation [49, 64, 129]. In this chapter, we strive to follow best practices to enhance the effec-

tiveness of model evaluation.

To address the dataset-task mismatch, we utilize session-aware datasets3. In these datasets,

each user interacts with multiple items within a browsing session, and may have several such ses-

sions recorded. Specifically, our primary experiments are conducted on two datasets, Diginetica

and RetailRocket, as detailed in section 5.1.

Furthermore, during the evaluation phase, we score and rank items across the entire item set

rather than relying on candidate sampling. This approach mitigates biases introduced by the se-

lection of candidate sets [10, 20, 64], ensuring fairer comparisons and improved reproducibility.

For statistical sufficiency, we retain users with at least three sessions and items with at least

five interactions. The last two sessions of each user are reserved for validation and testing, while

the remaining sessions are used for training. These two reserved sessions are randomly assigned

to validation and test sets. The dataset statistics are presented in Table 5.2. Code and data for

reproducibility are publicly available4.

Evaluation metrics. To evaluate the effectiveness of each model, we let each model produce
3In contrast, previous studies converted user ratings into session data for evaluation. However, since these

rating-based datasets were not inherently session-specific and may exhibit weaker sequential signals [129], they
were excluded from this study.

4https://github.com/PreferredAI/CoVE.git
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Table 5.2: Data statistics

Diginetica RetailRocket

#interactions 12,146 230,817
#users 571 4,249
#sessions 2,670 24,732
#items 6,008 36,658
#sessions per user 4.68 5.82
#interactions per item 2.02 6.30
#interactions per session 4.55 9.33
density 0.354% 0.148%

a ranked list of recommended items for every user. We quantitatively evaluate ranking perfor-

mance using various well-known ranking metrics, including Area Under the ROC Curve (AUC),

Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain (NDCG), and Recall.

For these metrics, higher values indicate better quality. Comparisons between methods are tested

with one-tailed paired-sample Student’s t-test at 0.05 level (i.e., p-value < 0.05).

Expert Selection. Sequential recommendation models may not achieve their full replica-

bility and reproducibility due to flaws in implementation and hyper-parameter tuning [48, 99,

106, 125]; while simple yet effective models such as BPR [114] and GRU4Rec [50, 51] can

achieve competitive results with proper training settings [23, 62, 106]. Furthermore, [67, 86]

have demonstrated that shallow models can outperform deep models in various settings. In our

experiments, we not only focus on deep models but also on popular and effective shallow models

as experts, including two short-term preference models and two long-term preference models:

• Short-term preference models as expert:

GRU4Rec [50, 51]5: GRU4Rec is a session-based recommendation model that em-

ploys a Gated Recurrent Unit (GRU) to capture sequential user behavior. Bench-

marks indicate that GRU4Rec outperforms more recent session-based recommenda-

tion models.
5In our experiment, we use the improved GRU4Rec model proposed in [50].

68



SASRec++: SASRec [61] is a session-based recommendation model that leverages

self-attention mechanisms to capture user preferences. The SASRec+ [62] variant

using Cross-Entropy loss can outperform SASRec with Binary Cross-Entropy loss

and the allegedly superior BERT4Rec [128]. In this paper, we employ the BPR-max

loss for SASRec, named SASRec++, which yields the best performance.

• Long-term preference models as expert:

BPR [114]: BPR is a collaborative filtering model that optimizes the ranking of

positive items over negative ones. BPR is a simple yet effective model widely used

in recommendation systems.

FPMC [116]: Factorized Personalized Markov Chains is a sequential recommen-

dation model that captures user preferences by modeling item transitions within a

session.

Comparative Methods. To sufficiently evaluate the effectiveness of our proposed method,

we compare the proposed COVEh and COVEs models with individual selected short-term and

long-term preference models as well as:

• BERT4Rec [128] is a session-based recommendation model that employs a Transformer

architecture to capture sequential user behavior. BERT4Rec is included as a baseline due

to its popularity and effectiveness in session-based recommendation.

• LightGCN [44] is a graph-based recommendation model that captures user-item interac-

tions through a lightweight Graph Convolutional Network (GCN). LightGCN is included

as a baseline due to its effectiveness in capturing user-item relationships. LightGCN will

also be used as a long-term preference model in our investigation of COVEs with graph-

based experts.

• HGRU4Rec [109] is a hierarchical GRU-based method for session-aware recommendation

which take long-term user preferences into account. HGRU4Rec is included as a baseline
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due to its similarity in modeling both short- and long-term preferences.

Hyper-parameter Tuning. For all baselines, we perform a grid search with various hyper-

parameters to find the best configuration. For COVEh and COVEs, we also conduct a grid search

to determine the optimal configuration. We use the validation set to tune the hyper-parameters

to their best in term of NDCG@20 and the test set to evaluate model performance. The main

hyper-parameters include:

• Loss Function. We consider various loss functions, including BPR [114], BPR-max [50],

binary cross-entropy loss [61], cross-entropy [128], top-1 [51]. Generally, BPR and BPR-

max losses perform the best based on their ability to distinguish positive from negative

samples.

• Learning Rate. We consider learning rates in the range of [0.005, 0.1].

• Batch Size. We consider batch sizes in the range of [32, 512]. Different loss functions may

require different batch sizes. For example, BPR-max loss fits well with a smaller batch

size of around [32, 128], while BPR-loss can speed up with a larger batch size of 256 or

512 without trade-off in performance.

Experts’ Gate Input. As described in Section 5.2, we give the freedom of deciding gate

input to the experts. Individual experts can use their own unique features as gate input by a

standardized function. In the experiments for COVEh and COVEs, we follow common practice

in NLP research [58], where the input to the gate is item embeddings.

5.3.2 Overall Performance

Here, we investigate whether using a mixture of experts enhances recommendation effectiveness

compared to individual experts and baseline models.

Results reported in Table 5.3 consistently show that mixtures of experts outperform the base-

lines across datasets in terms of MRR, NDCG, and Recall significantly. The AUC metric does

not fully reflect recommendation performance, measuring the proportion of pairwise ranking cor-
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Table 5.3: Overall ranking performance: Comparison of COVE against baselines across
datasets

Model AUC MRR NDCG@k Recall@k

k=10 k=20 k=10 k=20

D
ig

in
et

ic
a

GRU4REC 0.7771 0.2979 0.3171 0.3233 0.3888 0.4133
SASREC 0.7666 0.2943 0.3301 0.3343 0.4466 0.4641
BERT4Rec 0.7177 0.3426 0.3560 0.3575 0.4011 0.4063
BPR 0.6334 0.0748 0.0854 0.0961 0.1361 0.1775
FPMC 0.6609 0.0945 0.1107 0.1205 0.1805 0.2189
LightGCN 0.7547 0.2120 0.2488 0.2601 0.3835 0.4273
HGRU4REC 0.5606 0.1188 0.1333 0.1392 0.1893 0.2130

COVEs 0.7854 0.4112§ 0.4379§ 0.4416§ 0.5254§ 0.5394§

COVEh 0.8007§ 0.3756§ 0.4003§ 0.4060§ 0.4869§ 0.5096§

Improvement % 3.04% 38.03% 32.66% 32.10% 17.64% 16.22%

R
et

ai
lR

oc
ke

t

GRU4REC 0.8772 0.2687 0.3035 0.3175 0.4356 0.4909
SASREC 0.6606 0.0962 0.1334 0.1412 0.2594 0.2892
BERT4Rec 0.7827 0.2278 0.2551 0.2596 0.3476 0.3653
BPR 0.8035 0.2161 0.2451 0.2528 0.3493 0.3794
FPMC 0.8393 0.2437 0.2744 0.2848 0.3879 0.4290
LightGCN 0.8044 0.1065 0.1238 0.1333 0.1970 0.2346
HGRU4REC 0.8692 0.2327 0.2612 0.2731 0.3735 0.4203

COVEs 0.8767 0.3365§ 0.3675§ 0.3783§ 0.4813§ 0.5239§

COVEh 0.8798§ 0.3406§ 0.3732§ 0.3831§ 0.4928§ 0.5319§

Improvement % 0.30% 26.76% 22.97% 20.66% 13.13% 8.35%
§p-value < 0.05. The statistical test is performed against the best-performing baseline.
The best values are bolded. The best values among baselines are underlined.

rectly. COVEh and COVEs maintain high AUC results, close to the best reported AUC yet still

statistically significant. Similarly, COVEs also achieves the best performance across datasets.

Among the selected experts, GRU4REC remains the best-performing model overall, showing

its robustness in the sequential recommendation task. The session-aware baseline HGRU4REC

does not outperform GRU4REC, which has also been reported in some benchmark [67].

FPMC itself can be interpreted as a combination of Matrix Factorization (MF) and Factor-

ization Markov Chains (FMC), which is similar to a composition of one long-term (MF) and one
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Table 5.4: Gating effectiveness evaluation: Ranking performance of both variants of
COVE with and without gating mechanism

Dataset Model Gate AUC MRR NDCG@k Recall@k

k=10 k=20 k=10 k=20

Diginetica
COVEs

↭ 0.7854 0.4112§ 0.4379§ 0.4416§ 0.5254§ 0.5394§

– 0.7694 0.3860 0.4071 0.4119 0.4816 0.5009

COVEh
↭ 0.8007 0.3756 0.4003 0.4060 0.4869§ 0.5096
– 0.8022 0.3694 0.3939 0.3997 0.4799 0.5026

RetailRocket
COVEs

↭ 0.8767§ 0.3365§ 0.3675§ 0.3783§ 0.4813 0.5239
– 0.8726 0.2847 0.3279 0.3395 0.4794 0.5251

COVEh
↭ 0.8826 0.3419§ 0.3735§ 0.3851§ 0.4902§ 0.5357
– 0.8836 0.3216 0.3549 0.3670 0.4782 0.5265

§ p-value < 0.05. The best values are bolded.

short-term (FMC) expert. However, each component contributes equally towards final optimiza-

tion objective.

5.3.3 Ablation Study

In this section, we systematically study the contribution of different components to our COVE.

First, we investigate the effectiveness of the proposed gating mechanism. Then, we analyze

various compositions of experts to gain insight in selecting the optimal combination of variant

experts.

Gating effectiveness. To further emphasize the contribution of the proposed gating mecha-

nism, we evaluate the performance of both variants of COVE without the learnable weights, the

gate values are always uniform values, i.e., g(x)i = 1
K , where K is the number of experts, which

assuming all experts contribute equally towards the overall optimization objective. Table 5.4

reports the ranking performance of COVEh and COVEs with and without the learnable weights

from the proposed gating mechanism. Without the flexibility of controlling how much each ex-

pert contributes, we observed a degradation in the recommendation performance for both COVEs
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and COVEh in term of ranking performance. COVEh without the learnable gating achieves a bit

higher AUC measure in both datasets, however, it is not statistically significant different from

COVEh with learnable gating. Thus, balancing the contribution among variant experts is not a

trivial task.

Same-Type Experts vs. Varying-Type Experts. The results from section 5.1 indicate the

presence of both short-term and long-term preferences within the session-aware recommendation

context. We categorize the compositions of experts into two sub-categories: same-type experts

and varying-type experts. The same-type expert mixture includes only short-term (or long-term)

experts, while the varying-type expert mixture comprises both short-term and long-term experts.

We further explore different compositions of variant experts, including combinations of 2, 3, and

4 experts with varying types (which include both short-term and long-term experts). The results

for these compositions on the Diginetica dataset are presented in Table 5.5, while compositions

for the RetailRocket dataset are shown in Table 5.6.

As demonstrated in Table 5.5, compositions of the same-type experts for COVEh result in a

performance degradation compared to individual experts, whereas compositions of varying types

lead to significant improvements. For COVEs, it appears that it is easier to achieve better results

compared to individual experts. The key factor is identifying the optimal expert composition; in

this case, the selection of the optimal composition depends on the respecting metric.

The results in Table 5.6 show a similar pattern, where the best compositions consistently

include cross-type experts (GRU4REC+BPR) for both COVEh and COVEs.

5.3.4 COVEh With Graph-Based Expert

We further investigate the impact of incorporating a graph-based expert, LightGCN, as a long-

term preference model within the COVEh framework. Table 5.7 summarizes the experimental

results on both Diginetica and RetailRocket datasets, comparing individual experts as well as

COVEh based on BPR model.
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Table 5.5: Ranking performance with varying different experts on Diginetica dataset. GRU and
SAS are GRU4Rec and SASRec++ respectively.

Number
of

Experts

Expert model Ranking metrics

Short-term Long-term AUC MRR NDCG@k Recall@k

GRU SAS BPR FPMC k=10 k=20 k=10 k=20

C
O

V
E
h

2

↭ ↭ 0.7287 0.1569 0.1785 0.1876 0.2627 0.2977
↭ ↭ 0.7350 0.2368 0.2730 0.2781 0.3958 0.4168

↭ ↭ 0.7940 0.3507 0.3720 0.3803 0.4518 0.4851
↭ ↭ 0.7921 0.2380 0.2727 0.2811 0.3940 0.4273

↭ ↭ 0.8007 0.3756 0.4003 0.4060 0.4869 0.5096
↭ ↭ 0.6928 0.1321 0.1504 0.1562 0.2224 0.2452

3

↭ ↭ ↭ 0.7419 0.2189 0.2341 0.2444 0.2977 0.3380
↭ ↭ ↭ 0.7800 0.2871 0.3138 0.3191 0.4063 0.4273

↭ ↭ ↭ 0.7769 0.2377 0.2708 0.2785 0.3870 0.4168
↭ ↭ ↭ 0.7806 0.3355 0.3620 0.3675 0.4536 0.4746

4 ↭ ↭ ↭ ↭ 0.7744 0.3291 0.3541 0.3591 0.4413 0.4606

C
O

V
E
s

2

↭ ↭ 0.7930 0.4036 0.4318 0.4359 0.5236 0.5394
↭ ↭ 0.7423 0.2502 0.2844 0.2893 0.4046 0.4238

↭ ↭ 0.8119 0.3674 0.3845 0.3968 0.4553 0.5044
↭ ↭ 0.8059 0.3652 0.3998 0.4082 0.5166 0.5499

↭ ↭ 0.8006 0.3521 0.3726 0.3801 0.4501 0.4799
↭ ↭ 0.7943 0.3720 0.4045 0.4145 0.5166 0.5569

3

↭ ↭ ↭ 0.7860 0.4098 0.4362 0.4401 0.5219 0.5377
↭ ↭ ↭ 0.7833 0.4097 0.4385 0.4428 0.5324 0.5499

↭ ↭ ↭ 0.7919 0.3578 0.3980 0.4023 0.5289 0.5464
↭ ↭ ↭ 0.8035 0.3720 0.3897 0.4000 0.4606 0.5009

4 ↭ ↭ ↭ ↭ 0.7854 0.4112 0.4379 0.4416 0.5254 0.5394

The best values are bolded.
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Table 5.6: Ranking performance with varying experts on RetailRocket dataset.

Number
of

Experts

Expert model Ranking metrics

Short-term Long-term AUC MRR NDCG@k Recall@k

GRU SAS BPR FPMC k=10 k=20 k=10 k=20

C
O

V
E
h

2

↭ ↭ 0.8782 0.3397 0.3712 0.3815 0.4869 0.5277
↭ ↭ 0.7782 0.2221 0.2515 0.2595 0.3573 0.3886

↭ ↭ 0.8798 0.3406 0.3732 0.3831 0.4928 0.5319
↭ ↭ 0.8373 0.2224 0.2484 0.2593 0.3474 0.3904

↭ ↭ 0.8853 0.3393 0.3716 0.3823 0.4898 0.5321
↭ ↭ 0.8212 0.1791 0.1985 0.2082 0.2777 0.3163

3

↭ ↭ ↭ 0.8467 0.2942 0.3218 0.3316 0.4255 0.4639
↭ ↭ ↭ 0.8822 0.3337 0.3662 0.3769 0.4853 0.5277

↭ ↭ ↭ 0.7842 0.1600 0.1800 0.1880 0.2570 0.2885
↭ ↭ ↭ 0.8680 0.3207 0.3537 0.3644 0.4740 0.5159

4 ↭ ↭ ↭ ↭ 0.8644 0.3126 0.3439 0.3545 0.4582 0.5001

C
O

V
E
s

2

↭ ↭ 0.8767 0.3365 0.3675 0.3783 0.4813 0.5239
↭ ↭ 0.8150 0.2023 0.2338 0.2440 0.3490 0.3888

↭ ↭ 0.8898 0.3354 0.3694 0.3814 0.4952 0.5425
↭ ↭ 0.8283 0.1820 0.2404 0.2524 0.4354 0.4825

↭ ↭ 0.8877 0.3087 0.3451 0.3577 0.4792 0.5288
↭ ↭ 0.8269 0.1489 0.2036 0.2179 0.3921 0.4481

3

↭ ↭ ↭ 0.8038 0.2593 0.2824 0.2949 0.3742 0.4239
↭ ↭ ↭ 0.8235 0.2731 0.3070 0.3185 0.4297 0.4749

↭ ↭ ↭ 0.8129 0.1560 0.2129 0.2261 0.4048 0.4566
↭ ↭ ↭ 0.8828 0.3199 0.3546 0.3663 0.4815 0.5274

4 ↭ ↭ ↭ ↭ 0.8840 0.2379 0.2931 0.3067 0.4841 0.5382

The best values are bolded.
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Table 5.7: COVEh experimental results with graph-based expert

Number
of

Experts

Expert model Ranking metrics

Short-term Long-term AUC MRR NDCG@k Recall@k

GRU SAS BPR LightGCN k=10 k=20 k=10 k=20

D
ig

in
et

ic
a 1

↭ 0.7771 0.2979 0.3171 0.3233 0.3888 0.4133
↭ 0.7666 0.2943 0.3301 0.3343 0.4466 0.4641

↭ 0.6334 0.0748 0.0854 0.0961 0.1361 0.1775
↭ 0.7547 0.2120 0.2488 0.2601 0.3835 0.4273

2

↭ ↭ 0.7940 0.3507 0.3720 0.3803 0.4518 0.4851
↭ ↭ 0.7921 0.2380 0.2727 0.2811 0.3940 0.4273

↭ ↭ 0.8139 0.2870 0.3156 0.3245 0.4203 0.4553
↭ ↭ 0.7829 0.3036 0.3429 0.3489 0.4711 0.4956

R
et

ai
lR

oc
ke

t 1

↭ 0.8772 0.2687 0.3035 0.3175 0.4356 0.4909
↭ 0.6606 0.0962 0.1334 0.1412 0.2594 0.2892

↭ 0.8035 0.2161 0.2451 0.2528 0.3493 0.3794
↭ 0.8044 0.1065 0.1238 0.1333 0.1970 0.2346

2

↭ ↭ 0.8798 0.3406 0.3732 0.3831 0.4928 0.5319
↭ ↭ 0.8373 0.2224 0.2484 0.2593 0.3474 0.3904

↭ ↭ 0.8344 0.2386 0.2640 0.2752 0.3634 0.4079
↭ ↭ 0.8627 0.3027 0.3318 0.3432 0.4425 0.4872

The best values are bolded and second best values are underlined.

76



On the Diginetica dataset, integrating LightGCN with short-term experts leads to notable

improvements. Specifically, the combination of GRU4Rec and LightGCN achieves the highest

AUC score (0.8139), outperforming all other configurations. Additionally, the pairing of SASRec

with LightGCN achieves the best Recall@10 (0.4711) and Recall@20 (0.4956). These results

demonstrate that LightGCN as the graph-based long-term expert can complement short-term

models and enhance overall recommendation.

In contrast, on the RetailRocket dataset, LightGCN as an individual expert does not perform

as well as BPR. Consequently, combinations involving LightGCN do not outperform those with

BPR in most metrics. However, the combination of SASREC and LightGCN still achieves com-

petitive results, ranking second-best in several Recall and NDCG metrics, despite SASREC and

LightGCN performing poorly individually. This suggests that even when individual experts are

weak, their combination can provide complementary benefits.

Overall, these findings highlight the potential of integrating graph-based long-term experts,

such as LightGCN, within the COVEh framework, particularly when paired with strong short-

term models. This integration can lead to improved recommendation performance, similar to the

results achieved with long-term preference models like BPR.

5.3.5 Case Study

We investigate whether the same items can be recommended based on variant experts. For exam-

ple, an item aligned with one user’s long-term interests might simultaneously be recommended

due to another user’s short-term preferences.

In the Diginetica dataset (see Figure 5.6), item 1357 serves as a positive example, correctly

recommended to three users: indices 25, 272, and 273. Interestingly, the underlying contributions

for recommending item 1357 vary across these users. For user 25, the gate value contributions

are (0.0138, 0.2435, 0.0262, 0.7166) for GRU4Rec, SASRec, BPR, and FPMC, respectively. For

user 272, the gate values are (0.0163, 0.5362, 0.0264, 0.4212). For user 273, they are (0.0258,
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Gate values

GRU4Rec SASRec BPR FPMC

User 25 0.0138 0.2435 0.0262 0.7166

User 272 0.0163 0.5362 0.0264 0.4212

User 273 0.0258 0.5925 0.0405 0.3411

User 25

User 272

User 273

Item 1357

Recommended 
top-1 item

Figure 5.6: An example of different gate values for different users being recommended the same
item

0.5925, 0.0405, 0.3411).

For users 272 and 273, SASRec emerges as the dominant expert recommending item 1357,

with slightly different weightings, suggesting that item 1357 aligns with their short-term prefer-

ences. In contrast, for user 25, FPMC is the primary contributor, indicating that item 1357 likely

reflects this user’s long-term preference.

5.3.6 LLM as Gating Mechanism

In this section, we explore the potential of using Large Language Models (LLMs) as a gating

mechanism for COVE. The objective is to study if LLMs can dynamically select experts based

on user and item information, potentially improving recommendation performance.

We ask ChatGPT to give a list of top-50 items based on the scores from the pretrained experts,

all user historical interactions6. Figure 5.7 shows the prompt we used to query ChatGPT-4o. The

LLM is expected to analyze the scores from each expert and the user’s historical interactions to

make its recommendations.

Response from ChatGPT-4o is shown in Figure 5.7b and Figure 5.7c, where it computes the

average score assigned by each expert and ranks the items accordingly. The top-50 items are then

presented as a recommendation list. This corresponds to the ablation study of gating mechanism
6https://chatgpt.com/share/68511ca8-605c-8012-ac49-2a4aba7f8f66
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(a) Prompt to ChatGPT-4o (b) ChatGPT’s generated code (c) Top-50 items and reasoning

Figure 5.7: ChatGPT-4o as a gating mechanism for COVE.

discussed in subsection 5.3.3. The results suggest that, at present, ChatGPT does not provide

additional benefits in weighing the experts when acting independently. This leaves opportunities

for further exploration in future research.

5.3.7 Discussion

In this section, we further discuss alternative ways to scale up our proposed COVE using a larger

model (such as increasing the number of experts) or a larger dataset. In addition, we enumerate

a few limitations and potential direction for future improvements.

Increasing the number of experts by multiplying the same set of experts. Here we try

another approach to increase the number of experts in COVE, by multiplying the same set of

experts multiple times. As reported in Table 5.8, it is not clear that increasing the number of the

same experts multiple times helps in enhancing recommendation performance. However, this

approach also increases the computational cost of training due to the larger number of experts

being used. This further emphasizes that simply multiplying the same experts is not as effective

as more diverse experts.
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Table 5.8: Performance when increasing the number of experts: AUC and MRR

Multiply

Diginetica RetailRocket

COVEh COVEs COVEh COVEs

AUC MRR AUC MRR AUC MRR AUC MRR

⇑1 0.8007 0.3756 0.7854 0.4112 0.8798 0.3406 0.8767 0.3365
⇑2 0.7982 0.3731 0.7964 0.4097 0.8826 0.3419 0.8755 0.3374
⇑4 0.7984 0.3842 0.7963 0.4125 0.8797 0.3406 0.8738 0.3383

Scale to larger dataset. Here we would like to assess whether the overall performance of

the proposed COVE is still maintained on a larger scale of data. For this experiment, we use

Cosmetics dataset7, containing more than 2.5 millions interactions (approximately 200 times

bigger than Diginetica and 10 times bigger than RetailRocket dataset) with a total of 17, 268

users, 42, 367 items, and 172, 242 sessions. Due to the larger number of users and items, the

model size of each individual expert increases, taking much more time to train, especially with

the continuous gating. We can get rid of this problem as we perform offline training. During

inference, we use topk experts, which is a more efficient approach. Specifically, as reported

in Table 5.9, the best performance model of COVE is achieved using top-1 expert in inference.

Overall, Both COVE variants achieve significant better performance over the selected baselines

in term of MRR, NDCG@k, and Recall@k. Although FPMC performs the best in term of AUC,

its performance on MRR, NDCG@k, and Recall@k metrics are significantly worse than COVE.

This may be due to the main pairwise ranking objective, which is technically to optimize AUC.

CoVEh and CoVEs choices. The two proposed COVE frameworks offer different levels of

combining experts. COVEh combines experts at the hidden layer, allowing for more complex

interactions between expert outputs. This also limits the particular experts that can be used, as

they must have the same output hidden dimension. In contrast, COVEs combines experts at the

output layer, which is simpler and more interpretable. We can utilize any experts with different

output hidden dimensions, as long as they can output a score for the set of items. The gating
7https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
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Table 5.9: Performance on Cosmetics dataset with > 2.5 millions interactions

Model AUC MRR NDCG@k Recall@k

k=10 k=20 k=10 k=20

BPR 0.8054 0.0175 0.0189 0.0250 0.0396 0.0638
FPMC 0.9248 0.0985 0.1152 0.1319 0.2022 0.2684
GRU4REC 0.9147 0.1568 0.1842 0.2042 0.3069 0.3857
SASREC 0.9104 0.1568 0.1823 0.1999 0.2967 0.3661
HGRU4REC 0.8948 0.0764 0.0878 0.1020 0.1546 0.2113

COVEs 0.9167§ 0.1643§ 0.1937§ 0.2135§ 0.3224§ 0.4007§

COVEh 0.9182§ 0.1647§ 0.1940§ 0.2139§ 0.3229§ 0.4016§

Improvement % -0.71% 5.04% 5.32% 4.75% 5.21% 4.12%
§p-value < 0.05. The best values are bolded. The best values among baselines are
underlined. The statistical test is performed against the best-performing baseline.

mechanism in COVEs is also simpler, as it only needs to combine the output scores of the experts

rather than their hidden states. However, this simplicity comes at the cost of potentially losing

some complex interactions between expert outputs that COVEh can capture. The choice between

these two variants depends on the specific use case and the desired complexity of the model. For

example, COVEh may be more suitable for tasks requiring complex interactions between expert

outputs, while COVEs may be preferred for tasks where interpretability is crucial.

Running time analysis. COVE models are mixtures of all individual experts, so the overall

training time is approximately the sum of all experts’ training time, overhead from the gating

mechanism, and the time saved by requiring only a single backward pass for the entire model

instead of separate backward passes for individual experts.

Table 5.10 reports the training time for the two COVE variants that incorporate all four

experts (BPR, FPMC, GRU4REC, and SASREC), along with the training time for each expert

on Diginetica dataset. All models were trained for 200 epochs with a batch size of 32, and

running time was measured in seconds. Among the individual experts, BPR required the least

time to train (7.5 minutes), while FPMC required the most (19.1 minutes). GRU4REC and

SASREC took similar training times (11.3 and 11.8 minutes, respectively). The total training
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Table 5.10: Training time for Diginetica dataset, same batch size (32) and number of epochs
(200) for all models.

Model BPR FPMC GRU4REC SASREC Expert total COVEh COVEs

Training time (s) 449.256 1146.133 676.165 705.373 2976.927 4677.913 3770.832

time for all four experts was 49.6 minutes. In comparison, COVEh took 78 minutes, and COVEs

took 62.8 minutes, corresponding to approximately 1.6 and 1.3 times the combined training

time of the individual experts, respectively. This increase is expected, as COVE models incur

additional computational costs from the gating mechanism and the aggregation of expert outputs.

In practice, the use of pretrained individual experts can substantially reduce the training time

for COVE variants. When pretrained experts are available, they can be directly incorporated into

COVE without training from scratch, enabling much faster convergence of the COVE models.

Limitations and potential improvements. Although both of COVE variants achieve con-

sistently better performance, some limitations persist in the chosen approaches. Firstly, COVE

uses continuous mixture-of-experts training, where every single expert is activated. This may

result in a longer and inefficient training process and difficulties in scalability. However, due to

the uniqueness of how each expert views input data, continuous training seems necessary for the

experts to capture complete user behaviors. Secondly, various experts may converge differently,

which the proposed methods did not tackle and could lead to overfitting for individual experts

when the overall objective is achieved. The Composition of Variant Experts framework is gener-

alized and flexible in incorporating any type of experts; however, in this work, expert selection

mainly focuses on a few well-known approaches. Furthermore, we presuppose the output hid-

den dimension of each expert in the proposed COVEh variant to be the same. This limits the

flexibility of each individual expert, as the best-performing parameters for one expert may differ

from another in practice. Methods of combining experts with different hidden output dimensions

could be considered.
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5.4 Discussion

While users typically have a long-term preference profile built up over a long period of time, there

are short-term effects that may affect preferences as well. In this work, we establish that different

types of ‘experts’ that focus on either short- or long-term preference would work better together,

as not only do both types of preferences matter, but the way they do so differs from user to user.

Which model predominates also varies across datasets, emphasizing the proposed framework

approach of COVE, leveraging on multiple experts working in concert, while accommodating a

gating mechanism that modulates the influence of each expert on recommendations.
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Chapter 6

Discussion and Future Work

6.1 Summary of Contributions

This dissertation advances the modeling of multiple tasks within recommendation systems, mov-

ing beyond the limitations of traditional offline supervised learning. It investigate how “models”

can be used effectively to address the complex and dynamic “tasks” in recommendation plat-

forms. Multiple novel approaches have been presented, each designed to enhance the learning

process within these frameworks

First, the dissertation addresses the “one model, multiple domains” problem through dual-

target cross-domain recommendation, where two related tasks arise from distinct domains. The

NO3 setting is introduced, characterized by no user overlap, no item overlap, and no side in-

formation. A multi-task learning framework is proposed, enabling the model to learn both do-

mains simultaneously. Moreover, a methodology to “tie” similar users is presented, encouraging

close representations and leveraging mediated latent user preferences to improve recommenda-

tion quality across both domains.

Second, the dissertation explores “one model, sequential tasks” in continual learning for rec-

ommendation systems. This framework focuses on how a recommender system can adapt to the

arrival of new users, items, and interactions over time as a sequence of distinct tasks. A stan-
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dardized framework for the training, testing, and evaluation of continual collaborative filtering

is introduced. Additionally, a model-agnostic approach is proposed, which can seamlessly inte-

grate with any traditional recommendation model. This approach aims to maximize transfer and

mitigate interference among multiple tasks.

Third, the dissertation investigates “multiple models, one task” problem by integrating multi-

ple specialized experts to learn complex user preferences within a single recommendation frame-

work, allowing for the simultaneous modeling of short-term and long-term preferences. This is

achieved through a mixture-of-experts framework, where each expert specializes in either short-

term or long-term preferences. The proposed method is shown to outperform state-of-the-art

models on various datasets, demonstrating its effectiveness in capturing user preferences.

6.2 Future Research Directions

For future research, several directions which involve “models” and “tasks” can be explored.

The rapid advancements in computer vision and natural language processing have been in-

spired by the success of transfer learning. Foundational studies and pretrained models (e.g.,

ResNet, EfficientNet in vision, and Transformer-based models in natural language processing)

have demonstrated how knowledge learned from large-scale datasets can be transfered to a wide

range of downstream tasks. These models provide a robust starting point, enabling researchers

to quickly build upon generalized representations. For instance, in computer vision, models like

ResNet and EfficientNet have been pretrained on large datasets such as ImageNet, allowing them

to generalize well and extract general features from images into dense representations. These

representations can then be fine-tuned for specific tasks, such as object detection or image seg-

mentation, significantly reducing the need for extensive labeled data for each task. This “one

model, any task” relationship has been well established in these domains. In recommendation

systems, however, the development of such generalized, transferable models remains in its in-

fancy. While many studies have leveraged pretrained language models, including LLMs, for
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text-based recommendation, the field still lacks a powerful pretrained model that can serve as a

foundation for general recommendation tasks. Future research could focus on developing such

models, enabling transfer learning in this domain much like ResNet and EfficientNet in computer

vision.

MoE-based recommendation frameworks have shown promise in capturing complex user

preferences by integrating multiple experts. However, current approaches primarily focus on

multi-task learning setting, where each expert is specialized in a different task. Future research

could explore the potential of MoE-based frameworks in (i) continual learning settings, enabling

the model to learn user long-term and task-specific preferences, and (ii) multi-interest recom-

mendation, where the model can capture multiple user interests simultaneously.
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[49] Hidasi, B., and Czapp, Á. T. 2023b. Widespread flaws in offline evaluation of recommender
systems. In Proceedings of the 17th acm conference on recommender systems, 848–855. 5.3.1

[50] Hidasi, B., and Karatzoglou, A. 2018. Recurrent neural networks with top-k gains for
session-based recommendations. In Proceedings of the 27th ACM international conference
on information and knowledge management, 843–852. 2.1.3, 5.3.1, 5

[51] Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; and Tikk, D. 2016. Session-based recommenda-
tions with recurrent neural networks. In 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.
5.1, 5.2.2, 5.3.1

90



[52] Hoi, S. C.; Sahoo, D.; Lu, J.; and Zhao, P. 2021. Online learning: A comprehensive survey.
Neurocomputing 459:249–289. 1

[53] Hou, Y.; He, Z.; McAuley, J.; and Zhao, W. X. 2023. Learning vector-quantized item
representation for transferable sequential recommenders. In Proceedings of the ACM Web
Conference 2023, 1162–1171. 2.1.4

[54] Hu, L.; Cao, J.; Xu, G.; Cao, L.; Gu, Z.; and Zhu, C. 2013. Personalized recommendation
via cross-domain triadic factorization. In Proceedings of the 22nd international conference
on World Wide Web, 595–606. 2.3.2

[55] Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE international conference on data mining, 263–272. Ieee. 2.1.1

[56] Jacobs, R. A.; Jordan, M. I.; Nowlan, S. J.; and Hinton, G. E. 1991. Adaptive mixtures of
local experts. Neural computation 3(1):79–87. 5.2.1

[57] Jendal, T. E.; Le, T.-H.; Lauw, H. W.; Lissandrini, M.; Dolog, P.; and Hose, K. 2024.
Hypergraphs with attention on reviews for explainable recommendation. In Goharian, N.;
Tonellotto, N.; He, Y.; Lipani, A.; McDonald, G.; Macdonald, C.; and Ounis, I., eds., Ad-
vances in Information Retrieval, 230–246. Cham: Springer Nature Switzerland. 2.1.1

[58] Jiang, A. Q.; Sablayrolles, A.; Roux, A.; Mensch, A.; Savary, B.; Bamford, C.; Chaplot,
D. S.; Casas, D. d. l.; Hanna, E. B.; Bressand, F.; et al. 2024. Mixtral of experts. arXiv
preprint arXiv:2401.04088. 5.3.1

[59] Jin, J.; Chen, X.; Zhang, W.; Chen, Y.; Jiang, Z.; Zhu, Z.; Su, Z.; and Yu, Y. 2022. Multi-
scale user behavior network for entire space multi-task learning. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, 874–883. 2.1

[60] Joshi, M.; Dredze, M.; Cohen, W.; and Rose, C. 2012. Multi-domain learning: when
do domains matter? In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, 1302–1312.
1

[61] Kang, W.-C., and McAuley, J. 2018. Self-attentive sequential recommendation. In 2018
IEEE International Conference on Data Mining (ICDM), 197–206. IEEE. 2.1.3, 2.1.4, 5.3.1

[62] Klenitskiy, A., and Vasilev, A. 2023. Turning dross into gold loss: is bert4rec really better
than sasrec? In Proceedings of the 17th ACM Conference on Recommender Systems, 1120–
1125. 5.3.1

[63] Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization techniques for recom-
mender systems. Computer 42(8):30–37. 2.1, 2.1.1, 3.3, 4.3.1

[64] Krichene, W., and Rendle, S. 2020. On sampled metrics for item recommendation. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, 1748–1757. 5.3.1

[65] Kuhn, H. W. 1955. The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2):83–97. 3.2.1

[66] Kumar, A.; Kumar, N.; Hussain, M.; Chaudhury, S.; and Agarwal, S. 2014. Semantic
clustering-based cross-domain recommendation. In 2014 IEEE Symposium on Computational

91



Intelligence and Data Mining (CIDM), 137–141. IEEE. 2.3.3
[67] Latifi, S.; Mauro, N.; and Jannach, D. 2021. Session-aware recommendation: A surprising

quest for the state-of-the-art. Information Sciences 573:291–315. 5.3.1, 5.3.2
[68] Le, T.-H., and Lauw, H. W. 2021. Explainable recommendation with comparative con-

straints on product aspects. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 967–975. 2.1, 2.2

[69] Le, T.-H., and Lauw, H. W. 2024. Question-attentive review-level explanation for neural
rating regression. ACM Trans. Intell. Syst. Technol. 15(6). 2.1.4

[70] Le, D.-T.; Lauw, H. W.; and Fang, Y. 2017. Basket-sensitive personalized item recommen-
dation. In Proceedings of the 26th International Joint Conference on Artificial Intelligence,
IJCAI’17, 2060–2066. AAAI Press. 2.1.3

[71] LE, D. T.; LAUW, H. W.; and FANG, Y. 2018. Modeling contemporaneous basket se-
quences with twin networks for next-item recommendation. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence (IJCAI-18): Stockholm, Swe-
den, July, 13–19. 2.1.3

[72] Lee, D., and Seung, H. S. 2000. Algorithms for non-negative matrix factorization. Ad-
vances in neural information processing systems 13. 3.3

[73] Li, P., and Tuzhilin, A. 2020. Ddtcdr: Deep dual transfer cross domain recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining, 331–339.
2.1, 2.3.1

[74] Li, H.; Wang, Y.; Lyu, Z.; and Shi, J. 2020. Multi-task learning for recommendation over
heterogeneous information network. IEEE Transactions on Knowledge and Data Engineering
34(2):789–802. 2.1, 2.2

[75] Li, X.; Chin, J. Y.; Chen, Y.; and Cong, G. 2021. Sinkhorn collaborative filtering. In
Proceedings of the web conference 2021, 582–592. 3.3

[76] Li, M.; Jullien, S.; Ariannezhad, M.; and de Rijke, M. 2023a. A next basket recommenda-
tion reality check. ACM Trans. Inf. Syst. 41(4). 2.1.3

[77] Li, R.; Deng, W.; Cheng, Y.; Yuan, Z.; Zhang, J.; and Yuan, F. 2023b. Exploring the
upper limits of text-based collaborative filtering using large language models: Discoveries
and insights. arXiv preprint arXiv:2305.11700. 2.1.4

[78] Li, B.; Yang, Q.; and Xue, X. 2009a. Can movies and books collaborate? cross-domain
collaborative filtering for sparsity reduction. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, 2052–2057. 2.3.1

[79] Li, B.; Yang, Q.; and Xue, X. 2009b. Transfer learning for collaborative filtering via a
rating-matrix generative model. In Proceedings of the 26th annual international conference
on machine learning, 617–624. 2.1, 2.3.1

[80] Liang, D.; Krishnan, R. G.; Hoffman, M. D.; and Jebara, T. 2018. Variational autoencoders
for collaborative filtering. In Proceedings of the 2018 world wide web conference, 689–698.
2.1.1, 3.3

92



[81] Ling, G.; Yang, H.; King, I.; and Lyu, M. R. 2012. Online learning for collaborative
filtering. In The 2012 International Joint Conference on Neural Networks (IJCNN), 1–8.
IEEE. 4

[82] Liu, M.; Li, J.; Li, G.; and Pan, P. 2020. Cross domain recommendation via bi-directional
transfer graph collaborative filtering networks. In Proceedings of the 29th ACM international
conference on information & knowledge management, 885–894. 2.3.1

[83] Liu, F.; Chen, H.; Cheng, Z.; Liu, A.; Nie, L.; and Kankanhalli, M. 2022. Disentangled
multimodal representation learning for recommendation. IEEE Transactions on Multimedia.
2.1

[84] Liu, Y.-F.; Hsu, C.-Y.; and Wu, S.-H. 2015. Non-linear cross-domain collaborative filtering
via hyper-structure transfer. In International Conference on Machine Learning, 1190–1198.
PMLR. 2.3.2

[85] Lu, Y.-T.; Yu, S.-I.; Chang, T.-C.; and Hsu, J. Y.-j. 2009. A content-based method to
enhance tag recommendation. In Twenty-first international joint conference on artificial in-
telligence. 2.1.2

[86] Ludewig, M.; Mauro, N.; Latifi, S.; and Jannach, D. 2019. Performance comparison of
neural and non-neural approaches to session-based recommendation. In Proceedings of the
13th ACM conference on recommender systems, 462–466. 5.3.1

[87] Luo, X.; Zhou, M.; Xia, Y.; and Zhu, Q. 2014. An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender systems. IEEE Trans-
actions on Industrial Informatics 10(2):1273–1284. 3.3

[88] Luo, X.; Zhou, Y.; Liu, Z.; Hu, L.; and Zhou, M. 2021. Generalized nesterov’s acceleration-
incorporated, non-negative and adaptive latent factor analysis. IEEE Transactions on Services
Computing 15(5):2809–2823. 3.3

[89] Ma, H.; Yang, H.; Lyu, M. R.; and King, I. 2008. Sorec: social recommendation using
probabilistic matrix factorization. In Proceedings of the 17th ACM Conference on Information
and Knowledge Management, CIKM ’08, 931–940. New York, NY, USA: Association for
Computing Machinery. 2.1.4

[90] Ma, J.; Zhao, Z.; Yi, X.; Chen, J.; Hong, L.; and Chi, E. H. 2018a. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, 1930–
1939. 2.1, 2.5

[91] Ma, X.; Zhao, L.; Huang, G.; Wang, Z.; Hu, Z.; Zhu, X.; and Gai, K. 2018b. Entire space
multi-task model: An effective approach for estimating post-click conversion rate. In The 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval,
1137–1140. 2.1, 2.2

[92] Ma, J.; Zhao, Z.; Chen, J.; Li, A.; Hong, L.; and Chi, E. H. 2019a. Snr: Sub-network
routing for flexible parameter sharing in multi-task learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, 216–223. 2.1, 2.5

[93] Ma, M.; Ren, P.; Lin, Y.; Chen, Z.; Ma, J.; and Rijke, M. d. 2019b. ⇀-net: A parallel

93



information-sharing network for shared-account cross-domain sequential recommendations.
In Proceedings of the 42nd international ACM SIGIR conference on research and development
in information retrieval, 685–694. 2.3.2

[94] Ma, H.; King, I.; and Lyu, M. R. 2009. Learning to recommend with social trust en-
semble. In Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, 203–210. 3.3, 4.3.1

[95] Man, T.; Shen, H.; Jin, X.; and Cheng, X. 2017. Cross-domain recommendation: An
embedding and mapping approach. In IJCAI, volume 17, 2464–2470. 2.3.2

[96] McCloskey, M., and Cohen, N. J. 1989. Catastrophic interference in connectionist net-
works: The sequential learning problem. In Psychology of learning and motivation, vol-
ume 24. Elsevier. 109–165. 4.1

[97] McLaughlin, M. R., and Herlocker, J. L. 2004. A collaborative filtering algorithm and
evaluation metric that accurately model the user experience. In Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in information retrieval,
329–336. 2.1.1

[98] Mi, F.; Lin, X.; and Faltings, B. 2020. Ader: Adaptively distilled exemplar replay towards
continual learning for session-based recommendation. In Fourteenth ACM Conference on
Recommender Systems, 408–413. 2.4

[99] Milogradskii, A.; Lashinin, O.; P, A.; Ananyeva, M.; and Kolesnikov, S. 2024. Revisiting
bpr: A replicability study of a common recommender system baseline. In Proceedings of the
18th ACM Conference on Recommender Systems, 267–277. 5.3.1

[100] Mnih, A., and Salakhutdinov, R. R. 2007. Probabilistic matrix factorization. In Platt,
J.; Koller, D.; Singer, Y.; and Roweis, S., eds., Advances in Neural Information Processing
Systems, volume 20. Curran Associates, Inc. 2.1.1

[101] Moreno, O.; Shapira, B.; Rokach, L.; and Shani, G. 2012. Talmud: transfer learning for
multiple domains. In Proceedings of the 21st ACM international conference on Information
and knowledge management, 425–434. 2.3.1

[102] Nichol, A.; Achiam, J.; and Schulman, J. 2018. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999. 1, 4.3.1

[103] Ostapenko, O.; Puscas, M.; Klein, T.; Jahnichen, P.; and Nabi, M. 2019. Learning to
remember: A synaptic plasticity driven framework for continual learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 11321–11329. 4.3.1

[104] Peng, D.; Pan, S. J.; Zhang, J.; and Zeng, A. 2021. Learning an adaptive meta model-
generator for incrementally updating recommender systems. In Proceedings of the 15th ACM
Conference on Recommender Systems, 411–421. 2.1, 2.4

[105] Petrov, A., and Macdonald, C. 2022a. Effective and efficient training for sequential rec-
ommendation using recency sampling. In Sixteen ACM Conference on Recommender Systems.
2.1.3

[106] Petrov, A., and Macdonald, C. 2022b. A systematic review and replicability study of
bert4rec for sequential recommendation. In Proceedings of the 16th ACM Conference on

94



Recommender Systems, 436–447. 5.3.1
[107] Pham, Q.; Liu, C.; Sahoo, D.; and Steven, H. 2021. Contextual transformation networks

for online continual learning. In International Conference on Learning Representations. 1
[108] Pham, Q.; Liu, C.; and Hoi, S. 2021. Dualnet: Continual learning, fast and slow. Advances

in Neural Information Processing Systems 34:16131–16144. 1
[109] Quadrana, M.; Karatzoglou, A.; Hidasi, B.; and Cremonesi, P. 2017. Personalizing

session-based recommendations with hierarchical recurrent neural networks. In proceedings
of the Eleventh ACM Conference on Recommender Systems, 130–137. 2.1.3, 5.1, 5.3.1

[110] Rafailidis, D., and Crestani, F. 2016. Top-n recommendation via joint cross-domain user
clustering and similarity learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 426–441. Springer. 2.3.1, 2.3.2

[111] Ren, S.; Gao, S.; Liao, J.; and Guo, J. 2015. Improving cross-domain recommendation
through probabilistic cluster-level latent factor model. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 29. 2.3.1

[112] Ren, P.; Chen, Z.; Li, J.; Ren, Z.; Ma, J.; and De Rijke, M. 2019. Repeatnet: A repeat
aware neural recommendation machine for session-based recommendation. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, 4806–4813. 2.1.3

[113] Ren, X.; Wei, W.; Xia, L.; Su, L.; Cheng, S.; Wang, J.; Yin, D.; and Huang, C. 2024.
Representation learning with large language models for recommendation. In Proceedings of
the ACM Web Conference 2024, 3464–3475. 2.1.4

[114] Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-Thieme, L. 2009. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence, UAI ’09, 452–461. Arlington, Virginia, USA: AUAI
Press. 2.1.1, 5.1, 5.2.2, 5.3.1

[115] Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-Thieme, L. 2012. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618. 2.1.1

[116] Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L. 2010. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th international
conference on World wide web, 811–820. 2.1.3, 5.3.1

[117] Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and Riedl, J. 1994. Grouplens:
An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM
conference on Computer supported cooperative work, 175–186. 2.1.1

[118] Riemer, M.; Cases, I.; Ajemian, R.; Liu, M.; Rish, I.; Tu, Y.; and Tesauro, G. 2019.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In
In International Conference on Learning Representations (ICLR). 4.3.1, 4.3.1

[119] Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T. P.; and Wayne, G. 2019. Experience
replay for continual learning. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 350–360. 4.3.1

[120] Saeed, W., and Omlin, C. 2023. Explainable ai (xai): A systematic meta-survey of current
challenges and future opportunities. Knowledge-Based Systems 263:110273. 2.1.4

95



[121] SAHOO, D.; PHAM, H. Q.; LU, J.; and HOI, S. C. Online deep learning: Learning deep
neural networks on the fly.(2018). In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence IJCAI 2018, July 13-19, Stockholm, 2660–2666. 1

[122] Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2000. Analysis of recommendation
algorithms for e-commerce. In Proceedings of the 2nd ACM Conference on Electronic Com-
merce, 158–167. 2.1.1

[123] Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on World
Wide Web, 285–295. 2.1, 2.1.1

[124] Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.; Hinton, G.; and Dean, J.
2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations. 5.2.1, 5.2.1

[125] Shehzad, F., and Jannach, D. 2023. Everyone’s a winner! on hyperparameter tuning
of recommendation models. In Proceedings of the 17th ACM Conference on Recommender
Systems, 652–657. 5.3.1

[126] Shu, K.; Wang, S.; Tang, J.; Wang, Y.; and Liu, H. 2018. Crossfire: Cross media joint
friend and item recommendations. In Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining, 522–530. 2.3.2, 2.3.3

[127] Sikka, R.; Dhankhar, A.; and Rana, C. 2012. A survey paper on e-learning recommender
system. International Journal of Computer Applications 47(9):27–30. 4

[128] Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; and Jiang, P. 2019. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings
of the 28th ACM international conference on information and knowledge management, 1441–
1450. 2.1.4, 5.3.1

[129] Tang, J., and Wang, K. 2018. Personalized top-n sequential recommendation via convo-
lutional sequence embedding. In Proceedings of the eleventh ACM international conference
on web search and data mining, 565–573. 2.1.3, 5.3.1, 3

[130] Tang, H.; Liu, J.; Zhao, M.; and Gong, X. 2020. Progressive layered extraction (ple): A
novel multi-task learning (mtl) model for personalized recommendations. In Proceedings of
the 14th ACM conference on recommender systems, 269–278. 2.1, 2.5

[131] Tanjim, M. M.; Su, C.; Benjamin, E.; Hu, D.; Hong, L.; and McAuley, J. 2020. Attentive
sequential models of latent intent for next item recommendation. In Proceedings of The Web
Conference 2020, WWW ’20, 2528–2534. New York, NY, USA: Association for Computing
Machinery. 2.1.3

[132] Tay, Y.; Luu, A. T.; and Hui, S. C. 2018. Multi-pointer co-attention networks for recom-
mendation. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, 2309–2318. 2.1.4

[133] Truong, Q.-T.; Salah, A.; and Lauw, H. W. 2021. Bilateral variational autoencoder for
collaborative filtering. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 292–300. 2.1.1

96



[134] Vasile, F.; Smirnova, E.; and Conneau, A. 2016. Meta-prod2vec: Product embeddings
using side-information for recommendation. In Proceedings of the 10th ACM conference on
recommender systems, 225–232. 2.1, 2.1.2

[135] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,
L. u.; and Polosukhin, I. 2017. Attention is all you need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc. 2.1.3

[136] Vitter, J. S. 1985. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS) 11(1):37–57. 4.2

[137] Wang, P.; Guo, J.; Lan, Y.; Xu, J.; Wan, S.; and Cheng, X. 2015. Learning hierarchical rep-
resentation model for nextbasket recommendation. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15,
403–412. New York, NY, USA: Association for Computing Machinery. 2.1.3

[138] Wang, N.; Wang, H.; Jia, Y.; and Yin, Y. 2018. Explainable recommendation via multi-
task learning in opinionated text data. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, SIGIR ’18, 165–174. New York, NY,
USA: Association for Computing Machinery. 2.1, 2.2

[139] Wang, J.; Ding, K.; Hong, L.; Liu, H.; and Caverlee, J. 2020. Next-item recommendation
with sequential hypergraphs. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’20, 1101–1110. New York,
NY, USA: Association for Computing Machinery. 2.1.3

[140] Wang, J.; Ding, K.; Zhu, Z.; and Caverlee, J. 2021a. Session-based recommendation with
hypergraph attention networks. In Proceedings of the 2021 SIAM international conference on
data mining (SDM), 82–90. SIAM. 2.1.3

[141] Wang, T.; Zhuang, F.; Zhang, Z.; Wang, D.; Zhou, J.; and He, Q. 2021b. Low-dimensional
alignment for cross-domain recommendation. In Proceedings of the 30th ACM international
conference on information & knowledge management, 3508–3512. 2.3.2

[142] Wang, C.; Ma, W.; Chen, C.; Zhang, M.; Liu, Y.; and Ma, S. 2023a. Sequential recom-
mendation with multiple contrast signals. ACM Trans. Inf. Syst. 41(1). 2.1.3

[143] Wang, Y.; Lam, H. T.; Wong, Y.; Liu, Z.; Zhao, X.; Wang, Y.; Chen, B.; Guo, H.;
and Tang, R. 2023b. Multi-task deep recommender systems: A survey. arXiv preprint
arXiv:2302.03525. 1

[144] Wang, H.; Chen, B.; and Li, W.-J. 2013. Collaborative topic regression with social
regularization for tag recommendation. In IJCAI, volume 13, 2719–2725. 2.1.4

[145] Wang, J.; De Vries, A. P.; and Reinders, M. J. 2006. Unifying user-based and item-based
collaborative filtering approaches by similarity fusion. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information retrieval,
501–508. 2.1.4

[146] Wu, X.; Magnani, A.; Chaidaroon, S.; Puthenputhussery, A.; Liao, C.; and Fang, Y. 2022.
A multi-task learning framework for product ranking with bert. In Proceedings of the ACM

97



Web Conference 2022, 493–501. 2.1
[147] Xi, D.; Chen, Z.; Yan, P.; Zhang, Y.; Zhu, Y.; Zhuang, F.; and Chen, Y. 2021. Modeling

the sequential dependence among audience multi-step conversions with multi-task learning
in targeted display advertising. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 3745–3755. 2.2

[148] Yang, D.; He, J.; Qin, H.; Xiao, Y.; and Wang, W. 2015. A graph-based recommendation
across heterogeneous domains. In proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, 463–472. 2.3.2, 2.3.3

[149] Yang, Y.; Huang, C.; Xia, L.; Liang, Y.; Yu, Y.; and Li, C. 2022. Multi-behavior
hypergraph-enhanced transformer for sequential recommendation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, 2263–2274.
New York, NY, USA: Association for Computing Machinery. 2.1.3

[150] Ying, H.; Zhuang, F.; Zhang, F.; Liu, Y.; Xu, G.; Xie, X.; Xiong, H.; and Wu, J. 2018. Se-
quential recommender system based on hierarchical attention network. In IJCAI international
joint conference on artificial intelligence. 2.1.3

[151] You, K.; Long, M.; Cao, Z.; Wang, J.; and Jordan, M. I. 2019. Universal domain adapta-
tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2720–2729. 1

[152] Yuan, F.; Karatzoglou, A.; Arapakis, I.; Jose, J. M.; and He, X. 2019. A simple convolu-
tional generative network for next item recommendation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM ’19, 582–590. New York,
NY, USA: Association for Computing Machinery. 2.1.3

[153] Yuan, F.; Zhang, G.; Karatzoglou, A.; Jose, J.; Kong, B.; and Li, Y. 2021. One person,
one model, one world: Learning continual user representation without forgetting. In Pro-
ceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 696–705. 2.1, 2.4

[154] Yuan, Z.; Yuan, F.; Song, Y.; Li, Y.; Fu, J.; Yang, F.; Pan, Y.; and Ni, Y. 2023. Where to
go next for recommender systems? id-vs. modality-based recommender models revisited. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2639–2649. 2.1.4

[155] Zhang, Y., and Yang, Q. 2021. A survey on multi-task learning. IEEE transactions on
knowledge and data engineering 34(12):5586–5609. 1

[156] Zhang, Z.; Jin, X.; Li, L.; Ding, G.; and Yang, Q. 2016. Multi-domain active learn-
ing for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30. 2.3.2

[157] Zhang, Z.; Liu, S.; Yu, J.; Cai, Q.; Zhao, X.; Zhang, C.; Liu, Z.; Liu, Q.; Zhao, H.;
Hu, L.; et al. 2024. M3oe: Multi-domain multi-task mixture-of experts recommendation
framework. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 893–902. 2.5

[158] Zhang, Y.; Chen, X.; et al. 2020. Explainable recommendation: A survey and new

98



perspectives. Foundations and Trends® in Information Retrieval 14(1):1–101. 2.1.4
[159] Zheng, L.; Noroozi, V.; and Yu, P. S. 2017. Joint deep modeling of users and items using

reviews for recommendation. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, WSDM ’17, 425–434. New York, NY, USA: Association for
Computing Machinery. 2.1.4

[160] Zhou, Y.; Lei, T.; Liu, H.; Du, N.; Huang, Y.; Zhao, V.; Dai, A. M.; Le, Q. V.; Laudon, J.;
et al. 2022. Mixture-of-experts with expert choice routing. Advances in Neural Information
Processing Systems 35:7103–7114. 5.2.1

[161] Zhu, F.; Chen, C.; Wang, Y.; Liu, G.; and Zheng, X. 2019. Dtcdr: A framework for
dual-target cross-domain recommendation. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 1533–1542. 2.1, 2.3.1, 2.3.2

[162] Zhu, F.; Wang, Y.; Chen, C.; Liu, G.; and Zheng, X. 2020. A graphical and attentional
framework for dual-target cross-domain recommendation. In IJCAI, volume 21, 39. 2.1,
2.3.1

[163] Zhu, Y.; Ge, K.; Zhuang, F.; Xie, R.; Xi, D.; Zhang, X.; Lin, L.; and He, Q. 2021. Transfer-
meta framework for cross-domain recommendation to cold-start users. In Proceedings of
the 44th international ACM SIGIR conference on research and development in information
retrieval, 1813–1817. 2.3.2

[164] Zhu, Y.; Tang, Z.; Liu, Y.; Zhuang, F.; Xie, R.; Zhang, X.; Lin, L.; and He, Q. 2022.
Personalized transfer of user preferences for cross-domain recommendation. In Proceedings
of the fifteenth ACM international conference on web search and data mining, 1507–1515.
2.3.2

[165] Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; and He, Q. 2020. A
comprehensive survey on transfer learning. Proceedings of the IEEE 109(1):43–76. 1

99


	List of Figures
	List of Tables
	1 Introduction
	1.1 Tasks in Recommender Systems
	1.1.1 One Model, One Task: Supervised Recommendation Systems
	1.1.2 One Model, Multiple Domains: Cross-Domain Recommendation
	1.1.3 One Model, Multiple Tasks: Multi-Task Recommendation
	1.1.4 One Model, Sequential Tasks: Continual Learning for Recommendation
	1.1.5 Multiple Models, One/Multiple Task(s): Mixture of Experts based Recommendation

	1.2 Main Contributions

	2 Literature Survey
	2.1 Traditional Recommender Systems
	2.1.1 Collaborative Filtering
	2.1.2 Content-Based Recommendation
	2.1.3 Sequential Recommendation
	2.1.4 Other Recommender System Formulations

	2.2 Multi-Task Recommendation
	2.3 Cross-Domain Recommendation
	2.3.1 Single-Target, Dual-Target, and Multi-Target
	2.3.2 User Overlapping
	2.3.3 Using Side Information

	2.4 Continual Learning for Recommendation
	2.5 Mixture of Experts Based Recommendation

	3 Dual-Target Disjointed Cross-Domain Recommendation
	3.1 Problem Formulation
	3.2 Methodology
	3.2.1 HNO3-CDR: User Hard-Matching for Cross-Domain Recommendation
	3.2.2 SNO3-CDR: Soft-Matching End-To-End Cross-Domain Recommendation

	3.3 Experiments
	3.3.1 Research Questions (RQ) and Discussions
	3.3.2 Case Study: Example Matched User Pairs

	3.4 Discussion

	4 Continual Collaborative Filtering Through Gradient Alignment
	4.1 Problem Formulation
	4.2 Methodology
	4.3 Experiments
	4.3.1 Experimental Settings
	4.3.2 Results and Insights

	4.4 Discussion

	5 Compositions of Variant Experts for Integrating Short-Term and Long-Term Preferences
	5.1 Problem Formulation
	5.2 Methodology
	5.2.1 Preliminary
	5.2.2 Composition of Variant Experts via Hidden Factors (CoVEh)
	5.2.3 Composition of Variant Experts via Scoring Function (CoVEs)

	5.3 Experiments
	5.3.1 Experimental Setup
	5.3.2 Overall Performance
	5.3.3 Ablation Study
	5.3.4 CoVEh With Graph-Based Expert
	5.3.5 Case Study
	5.3.6 LLM as Gating Mechanism
	5.3.7 Discussion

	5.4 Discussion

	6 Discussion and Future Work
	6.1 Summary of Contributions
	6.2 Future Research Directions

	Bibliography

